

Wildlife Division Support Project (WDSP)

The Butterflies of Kyabobo National Park, Ghana, and those of the Volta Region

by Torben B Larsen

(WDSP Report No. 64)

March 2006

In collaboration with:

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY	4
AC	CKNOWLEDGEMENTS	7
1.	INTRODUCTION	8
2.	KYABOBO NATIONAL PARK	9
	2.1 Location and characteristics of Kyabobo National Park	9
	2.1.1 Habitat types	9
	2.2 The butterflies of Kyabobo National Park	10
	2.2.1 Material and methods	10
	2.2.2 Analysis of the Kyabobo butterflies	11
	2.2.3 Conservation value of Kyabobo National Park	14
	2.3 Ecotourism potential	14
3.	VOLTA REGION – ECOLOGY AND BIOGEOGRAPHY	17
	3.1 The Volta Region setting	17
	3.2 History of butterfly collecting in the Volta Region	18
	3.3 Review of the Volta Region butterfly fauna	19
	3.3.1 Total butterfly fauna	19
	3.3.2 Endemics of Africa west of the Dahomey Gap	21
	3.3.3 Eastern species not found west of the Volta River	23
	3.4 Biogeographical summary	25
	3.5 Conservation priorities in the Volta Region	25
	3.6 Ecotourism	27
4.	CONCLUDING REMARKS	29
	REFERENCES	30
	APPENDICES:	
	Appendix 1 The butterflies of the Volta Region, Kyabobo, Wli Falls, and Kalakpa	33
	Appendix 2Butterflies recorded by Karsch (1893) from Adeli Mountains, German Togoland	55

LIST OF TABLES:

Table 2.2.2.	Summary of the number of the butterfly species known and	
	estimated in Kyabobo National Park	12
Table 2.2.3.	The ecological composition of the butterfly in Ghana, Volta	
	Region, and Kyabobo National Park	13
Table 3.3.1.	The total Volta butterfly Fauna and an analysis of those	
	missing	19
Table 3.3.2.	The ecological composition of the butterfly in Ghana	
	compared to the Volta Region	20
Table 3.3.2a.	An annotated list of the butterflies that are endemic to the	
	Volta Region	21
Table 3.3.2b.	An annotated list of the butterflies that are endemics to Africa	
	west of the Dahomey Gap, including the Volta Region	22
Table 3.3.3.	An annotated list of the butterflies that in Ghana are limited to the	
	Volta Region but that extend eastwards to Nigeria, Cameroun,	
	or equatorial Africa	23

Charaxes lactetinctus (natural size) one of the butterflies described from Bismarckburg by Karsch in 1893.

EXECUTIVE SUMMARY

Introduction (chapter 1)

This report constitutes an in-depth review of the butterfly (Lepidoptera: Rhopalocera) fauna of Kyabobo National Park (chapter 2) as well as an analysis of the composition of the butterfly fauna of the entire Volta Region (including the Togo Mountains). The Volta Region fauna is distinctly different from that of Ghana as a whole. The report is a companion to a larger report on the butterflies in Ghana as a whole (Larsen 2006).

Kyabobo National Park (chapter 2)

Kyabobo National Park is the most recent addition to Ghana's protected areas system, following a ten year gestation period. The park adjoins the Fazao-Malkafassa National Park in Togo. It is close to the German colonial station of Bismarckburg where significant documentation of natural history took place. More than 200 species of butterflies were listed by Karsch (1893). An analysis of these in appendix 2 shows that the present Kyabobo fauna matches the old material and that nothing indicates any extinction since then (all but 20 of the 200 species were recorded during the past ten years).

The park encompasses typical <u>Guinea Savannah</u> at the foot of the main ridge of mountains, succeeded by dense <u>Guinea Savannah Woodland</u>, characterized by a tree cover of 40-60%. In the lower parts of the mountains is a <u>Savannah-Forest Transition zone</u> and then stretches of <u>Drier Forest</u> in suitable areas. The final vegetation is tropical high forest of the <u>Semi-Deciduous Forest</u> type, resembling that in Ghana proper: this is mainly evident in the southern part of the park and is not extensive.

The butterfly analysis is based on the old Karsch data, material collected by the author and Paul Chambers in 1996, and extensive material collected by Richard Vorgas, Hein Boersma and the author as part of the present mission.

A total of 400 species have been positively identified from the park, and the estimated total is 500: this constitutes 80% of all the 641 butterfly species known from the entire Volta Region (the 400 positively recorded comprise 63%). The missing species of Kyabobo are mainly those adapted to wetter forest systems of the type found at Wli Falls Wildlife Sanctuary and elsewhere in the central mountains, forests that have been much degraded and even clear-felled in recent years. Only about 45% of known Volta species centered on the wet or moist forests are known from Kyabobo, while 84% of the more robust butterflies that are found in all types of forest are present. This is a consequence of the northern location of these forests, in fact the most northerly true forest anywhere in Ghana.

Many interesting and internationally rare butterflies have been found in the park, including 17 species described as new from the German colony, and two described by the author (*Iolaus (Etesiolaus) kyabobo* Larsen, 1996 was described from near Shiare and *Anthene starki* Larsen, 2005 from Koue).

With an estimated 500 species of butterflies – just under 80% of the Volta Region total – the park is a welcome addition to the protected areas system in Ghana. When hitherto unvisited patches of semi-deciduous forest are researched they will yield additional interesting species. And most of the park is relatively undisturbed with the vegetation in good condition.

The park is not likely to become a major area of ordinary tourist interest from within or outside Ghana. Though the mountains are very beautiful at a distance, they are rather remote and difficult of access. However, as a true wilderness it has some potential for hiking and places like the Pawa Satellite Camp provide a comfortable base for staying overnight in the forest – the same is true for those who can get camping equipment to the Laboum waterfalls. The report by Dowsett-Lemaire & Dowsett (2005) see "little future for birding ecotourism in Kyabobo" since all birds can more easily been seen elsewhere. Probably Kyabobo will always be a somewhat specialist tourist goal.

Volta Region – ecology and biogeography (chapter 3)

The Volta Region as here defined is bordered to the south by the ocean, to the west by the Volta River (now Lake Volta), to the east by the dry zone of the Dahomey Gap, and to the north by the beginning of the main savannah zone just north of Kyabobo National Park. It is a rather small area with some most interesting special characteristics. Were it not for the mountain ridge of the Ghana/Togo Mountains, rising to 700-800m+, the entire region would be savannah of the type that constitutes the Dahomey Gap. The mountains, however, have to some extent created their own local climatic conditions, which have increased rainfall and provided the basis for forests, even during long spells of very dry conditions during the late Miocene till the late Pleistocene.

The Volta Region can be roughly divided into three zones: The southern zone from the coast to where the mountains start at the level of Ho. This is mainly open grasslands, savannah, and coastal bush, and often so dry than even Sudan Savannah elements penetrate. There are also patches of the southern and southeastern forest outlier types that have a significant amount of plant endemicity; this habitat allows some forest species to occur in unusually dry locations. At the northern limits of this area lies Kalakpa Resource Reserve (320 km^2) , which is the only area where the butterflies have been studied (see Larsen 2006:section 4.1.9 for details). The northern parts of Kalakpa has considerable expanses of riverine forest along the vestiges of streams that originate from the central mountains – the forests are north of the riverine forest, whereas elsewhere in Ghana the savannah lies north of the forest zone, which is an unusual reversal of the normal pattern. Kalakpa has more forest butterflies than any other savannah locality in Ghana. The central mountains were largely covered by versions of semi-deciduous forest, ranging from moist to dry. Not surprisingly this area has a higher proportion of "wetter" flora and fauna than in the mountains further north around Kyabobo. The topography is very varied and the vegetation is as well. Within living memory the forests have been severely logged – often clear-felled – or degraded to the point where little of the original cover remains in good condition. Only one tiny locality, Wli Falls/Agumatsa Wildlife Sanctuary (3km²) (see Larsen 2006:section 4.1.15 for details), is within the protected areas system. It seems that a few other forests are under some sort of community protection, but the overall situation seems unsatisfactory since there is no doubt that true forest butterflies are the most interesting component of the Volta Region fauna. The northern mountains commence somewhere north of the Jasikan area (the author is not familiar with the area). The northern mountains, as might be expected, have a less developed forest structure and less representation of dedicated forest species. The Kyabobo National Park (218km^2) is at the northern end of the mountain range, covering a wide range of ecotypes from Guinea savannah to dense woodland and patches of semi-deciduous forest, most of it in good condition. Its butterflies are covered in chapter 2 of this report.

Summary of the butterflies in the Volta Region

The butterflies of the Volta Region are better known than those practically anywhere else in tropical Africa. This is due to the early German collections, the activity of Father Theodor Maessen who collected assiduously during more than twenty years in the region, the author's own activities, and collecting on behalf of the African Butterfly Research Institute, Nairobi.

The main characteristics of the butterfly fauna may be summarized as follows:

- In all, 641 species have been positively recorded from the Volta Region, which is 70% of the 925 known from Ghana as a whole.
- Of the 641 butterfly species in the Volta Region, 474 have been found inside the three localities in the protected areas system, constituting 74% of the total. This is considerably less than for the forest region as a whole, where 80% of the larger number of species have been positively recorded.
- Of the species not found in the Volta Region, 150 are found mainly in the wetter forests of Africa west of the Dahomey Gap *as well as* in Nigeria and often far into equatorial Africa, but not in the Volta Region.
- A further 76 of the 93 species that are endemic to Africa west of the Dahomey Gap are missing from Volta, only 17 of the endemics being found east of the Volta River.
- Nearly all the missing species of both categories above are those associated with the wetter forest systems.
- Seven species are narrowly endemic to the Volta Region, being found neither in Ghana proper west of the Volta River, nor in Nigeria or further east.
- Fifteen species are known from Volta Region and then from further east to Nigeria and beyond, but have never managed to cross the Volta Region.

The biogeographical interpretation of the above data seems to reflect the fact that during the several periods of climatic change from the late Miocene through the Pliocene and the Pleistocene, the Volta River always remained a significant biogeographical barrier, even at times when the Dahomey Gap was wholly bridged by forest. However, in order for the endemic and eastern species to have survived in the Volta Region, the mountains must also have acted as forest refuges at least during the latest half of the Pliocene/Pleistocene period. The butterflies lend greater importance on the Volta Region as a major biogeographical feature than do some other previous studies.

Conservation priorities

The forests of the Volta Region, shared by Ghana and Togo, are one of the priority conservation areas in West Africa (Bakarr *et al.* 2001). It has a rich flora and fauna. The complex biogeography is the result of climatic change processes that stretch back over many million years. Close analysis of the butterflies, presented in this report for the first time, indicates that the patterns are more significant than the region has been given credit for in the past – though opinions have varied. New techniques, not least increased knowledge about West Africa as a whole and the use of molecular studies, will permit a deepening of our understanding. This will be possible only if the flora and fauna is preserved for the future.

Kalakpa Resource Reserve and Kyabobo National Park are well chosen and adequate to conserve the southern and northern parts of the Volta Region, especially savannah, woodland, and riverine forest. However, the most urgent conservation need is the forests of the central mountains, which are only protected by the tiny Wli Falls Wildlife Sanctuary. The largest of all African butterflies, *Papilio antimachus*, has almost certainly become extinct in the Region during the past 50 years due to the felling of forest in the Amedzofe area. It is urgent that what remains of semi-deciduous forest in reasonable condition be somehow tied together into a network of protected areas through collaboration between local communities, forestry, and wildlife. Ecotourism – in its widest sense – will increase in importance: this prospect might provide a glue to combine such conservation efforts.

ACKNOWLEDGEMENTS

The author would like to thank the Executive Director of the Wildlife Division, Forestry Commission (Y. Ofori-Frimpong) and the Regional Director of IUCN (I. Thiaw) for the invitation to undertake this assessment of the coverage by the protected areas system in Ghana through the means of the butterfly fauna. The Wildlife Division staff at headquarters in Accra continued a tradition of collaboration that dates back to 1993, when work was started on the recently published book *Butterflies of West Africa* (Larsen 2005). Also at headquarters much assistance was received from the IUCN/WDSP Project advisors, Peter Howard, Phil Marshall, and Peter Hartley. George Issaka was deputed to be the driver for the mission, a role which he fulfilled with efficiency, care, and a well-developed sense of humour. Only three times during two months of driving through most of Ghana was he obliged to admit: "I have never been here before".

As always Park Managers and their staff were welcoming and helpful. Many were old friends and colleagues in new settings. More than on previous occasions, junior staff with a considerable degree of knowledge concerning certain aspects of the parks or the flora and fauna were encountered – some of which now also have a degree of knowledge about butterflies.

Hein Boersma, a Dutch entomologist, joined the visits to the Volta Region and assisted in the data collecting. He also spent two weeks and Bobiri Butterfly Sanctuary and helped to lay the foundations for a full inventory of its butterfly fauna. Kwaku Aduse-Poko (Institute of Renewable Natural Resources, University of Science and Technology, Kumasi) provided data from his own butterfly research in Ghana as well as assisting with numerous practical issues. Finally Richard Vorgas, with his usual efficiency and ability to find good collecting sites, provided a profuse butterfly material from Kyabobo National Park, placing it among the best researched single localities anywhere in Africa.

Iolaus (Etesiolaus) kyabobo Larsen, 1996 (three times natural size)

1. INTRODUCTION

This report constitutes an in-depth review of the butterfly (Lepidoptera: Rhopalocera) fauna of Kyabobo National Park in Ghana's Volta Region. While the main aim is to study this fauna in its own right, butterflies – in a rough and ready manner – can also act as proxies for more general interpretations of overall biodiversity and biogeography (see discussion in the companion report on the butterflies of Ghana, chapter 2 (Larsen 2006)). Each species of butterfly acts as a proxy for 800 other organisms, mostly not scientifically described and about which we know practically nothing. The analysis of Kyabobo butterflies is then placed in the context of a review of the butterfly fauna of the entire Volta Region, including that of the Wli Falls/Agumatsa Wildlife Sanctuary and Kalakpa Resource Reserve.

The term "Volta Region" as used in this report refers to the forested hills and low mountains stretching from about the level of Ho to the northern limits of Kyabobo National Park. Neighbouring parts of Togo have similar vegetation and topographical features, especially the area around Kpalimé and the Fazao-Malfakassa National Park and are considered part of the Volta Region for the purposes of this paper.

To the west the region is delineated by the Volta River (now hugely enlarged by Lake Volta). To the east it is delineated by the beginnings of the dry savannah in the Dahomey Gap which covers most of Togo and Bénin, stretching south to the coast and even encroaching west onto the Accra Plains in Ghana.

The Volta Region is biogeographically distinct from the rest of Ghana – more so that it is often given credit for – as will be discussed later in the report. Faunistically and botanically the most diverse area seems to have been the central part of the region (Mt. Afadjato, Amedzofe area, Wli Falls, etc, and Kpalimé in Togo), where the broadleaf semi-deciduous evergreen forest (rainforest) is most in evidence. Its conservation importance was strongly emphasized in the conservation priority workshop for West Africa organized by Conservation International (Bakarr *et al.* 2001). However, very little such forest now remains in either Ghana or Togo owing to heavy agricultural exploitation and continued strong pressure on the land. The only entity that is part of the protected areas system administrated by the Wildlife Division is the tiny Wli Falls/Agumatsa Wildlife Sanctuary. There are a number of community conservation projects, but these are also very limited in size.

The butterflies of the central and southern parts of the Volta Region are exceptionally wellstudied thanks especially to the efforts of Father Theodor Maessen who was resident in Ho, Kpandu, and Likpe/Mate for more than 20 years and who was an indefatigable collector (material now in the collections of the Allyn Museum in Florida). His conclusions are essentially validated by collectors from the African Butterfly Research Institute in Nairobi, though they have turned up a few real surprises (*Anthene wilsoni* Talbot, 1935, *Capys vorgasi* Collins & Larsen, 2004). The central area of the Volta Region constitutes the best researched major biogeographical zone in West Africa, or for that matter in tropical Africa as a whole. The material provides an unusually firm yardstick against which to judge the Kyabobo fauna. However, Maessen never collected in the area covered by the present Park.

The report will be in two parts: The first will deal with the butterfly fauna specifically of Kyabobo National Park (chapter 2). The second will deal with the butterflies of the Volta Region as a whole and the significant and under-appreciated biogeographical peculiarities of the Region (chapter 3).

2. KYABOBO NATIONAL PARK

2.1 Location and characteristics of Kyabobo National Park

Kyabobo National Park is further north than the central part of the Volta Region and has a somewhat impoverished forest fauna and flora. However, with 218 km² of forest, forest-savannah transition, and dense woodland in good condition it is an extremely welcome addition to Ghana's conservation programme (work on defining the Park began in the early 1990s and it was formally defined and gazetted only recently).

The National Park covers 218km² and takes its beginning just north of the small town of Nkwanta, which contains the Park Headquarters (currently being significantly upgraded under the IUCN/WDSP project). It then stretches north to the village of Koue. To the east the Park is contiguous with the Fazao-Malfakassa National Park in Togo, which has long been gazetted and which apparently has a rather strong mammal fauna by regional standards. As poaching and encroachment in Kyabobo diminishes, this may lead to a fast growth of the Kyabobo mammal fauna, which is at present almost invisible.

Kyabobo as such has not been subject to any in-depth flora or fauna studies, but in the period from 1888 onwards large numbers of plants and animals were collected out of German Togoland's northern headquarters at Bismarckburg, situated near the southeastern border of the present park. At the time all of what is now Kyabobo National Park was part of German Togoland. German military and civilian staff were tasked also with natural history collecting and large numbers of specimens were returned to Germany: much of this material must have been caught in or just a few kilometres from Kyabobo. When most of the insects were published in 1893 in a single volume, the introduction states that "Herr Dr. Karsch informs me that the small Adeli Region [roughly the mountains now part of Kyabobo and Fazao-Malfakassa in Togo], despite the few years available for its exploration, now probably has its fauna and flora better documented than anywhere else in tropical Africa" (Büttner, 1893). That is certainly true for butterflies, where Karsch (1893) documented more than 200 species (see appendix 2 for details).

Dowsett & Dowsett-Lemaire (2005) found 234 species of birds and remark on the richness of the forest bird fauna, commenting that practically all observations were "range extensions" to the north (this may require modification since they do not mention the large collections from Bismarckburg that were discussed in several detailed papers by A. Reichenow between 1891 and 1902).

2.1.1 Habitat types

Kyabobo has a number of distinct habitat types, the most important of which are <u>Guinea</u> <u>Savannah</u> (open woodland). Throughout, the level ground bordering the mountains is typical of this habitat, though much of it is now converted to farmbush. The butterfly fauna is also quite similar to that of the savannahs in the rest of Ghana.

As the mountains are approached more closely, the density of savannah trees increases and begin to form patches of <u>Guinea Savannah Woodland</u>, characterized by a tree cover of 40-60%, but with continual tall grasses where the sun can penetrate. The woodland is composed of typical savannah trees that are largely fire-resistant. Again the butterfly fauna is typical of

the savannah and only a few forest species penetrate even denser woodlands. This type of woodland is also characteristic of the drier parts of the mountain slopes, looking very like real forest from a distance.

Imperceptibly, and hardly evident to the untrained eye, the woodland gains an admixture of true forest trees in the <u>Savannah-Forest Transition zone</u> (e.g. *Albizia, Manilkara, Milicia, Cola, Bridelia, Spondias* – many of which butterfly host plants). Only the most hardy forest butterflies occur here.

<u>Drier Forest</u> (with *Anogeissus leiocarpus* dominating, but with many other trees) is found on waterlogged ground in the northern areas of Koue and along the Nazeni-Pawa trail (see Dowsett-Lemaire & Dowsett 2005). A fair amount of forest butterflies are found in these habitats, mostly rather hardy species. The overall composition is unpredictable – each little bit of forests will turn up butterflies not seen before.

Finally there are patches of <u>Semi-Deciduous Forest</u>, which resembles that in Ghana proper, though slightly less floristically diverse. The canopy is mostly closed, but in the rockier parts of the mountains, the may be significant gaps in the canopy. These forest elements are most evident in the southern half of the park, notably around the Laboum Waterfall and the Shiare Valley (outside the park proper). The butterfly material collected by R. Vorgas shows that somewhere in the Kyillinga area (also outside the final park limits) there is semi-deciduous forest of very good quality. The west-facing mountain slope at the Pawa Satellite Camp also constitutes forest with a diverse forest butterfly fauna. Doubtless many patches of good forest remain to be explored elsewhere in the park.

2.2 The butterflies of Kyabobo National Park

2.2.1 Material and methods

1) Karsch (1893) published a list of more than 220 butterfly species (some duplicate names) from "der Berglandschaft Adeli" in German Togo, mostly labelled Bismarckburg where the German administration was based. Bismarckburg is very close to Kyabobo – indeed much of the material must have been captured within the present Park. This was the most extensive local/regional list yet compiled from tropical Africa and a testimony to the fact that German colonial officers were obligated to study natural history and to forward specimens to Germany. About 200 of Karsch's valid records are listed in appendix 2. Only 20 of these have not subsequently been recorded from Kyabobo: they are certain to occur there are and are included in the final list.

2) Larsen visited Shiare and Koue from 20 to 23 January 1996 to gather data on butterflies during the period when the first steps in converting the area into a national park were being taken. About 140 species were recorded. *Iolaus (Etesiolaus) kyabobo* Larsen, 1996 was described as new to science from Shiare (Larsen, 1996c). It has subsequently been found also in Guinea, Côte d'Ivoire, and Congo (Zaïre) (Collins & Larsen, 2004). *Anthene starki* Larsen, 2005 was described from Koue (where common on a river bank on the day) and appears to be a very rare butterfly throughout its range from Guinea and Burkina Faso to Côte d'Ivoire and the Central African Republic. Thus, there is none in the Natural History Museum, London and Father Maessen never caught it in the Volta Region.

3) Paul Chambers sent small collections of butterflies to Larsen from Nkwanta and Koue in March and April 1996, adding another 35 species to the Kyabobo list.

4) When the author was assigned to do an analysis of the Kyabobo butterfly fauna it was agreed that the experienced Ghanaian collector, Richard Vorgas, would be deputed to collect in Kyabobo and that the material would be deposited in the African Butterfly Research Institute, Nairobi after study by the author. He visited the southern fringes of the park (including Kyillinga and Laboum) for 14 days during June 2005. On this trip he collected also in parts of the area now excluded from the final demarcation of the Park (Shiare and Kyillinga): These are included as members of the Kyabobo fauna though they may just possibly be absent from the Park proper. Most probably reach their absolute northern distribution somewhere in the park. During this mission almost 250 species were collected, about half of which not on previous lists.

5) Vorgas continued his collecting mostly around Pawa and Keri for ten days during July 2005, collecting a total of 150 species, some 50 of which were new to Kyabobo – chiefly among the Hesperiidae.

6) Finally, Larsen paid a further visit from 20 to 25 August under the auspices of the IUCN/WDSP project, visiting Koue/Nazeni Camp, Pawa Satellite Camp, and the area around Odome and the Laboum Valley. He was accompanied by H. Boersma, a volunteer butterfly collector from the Netherlands. A total of 150 species were recorded, of which 25 were new to the Park.

These combined collecting activities have yielded a total just over 400 species which is adequate for characterizing the butterfly fauna as will be done in the sections to follow. The known species are all listed in appendix 1.

2.2.2 Analysis of the Kyabobo butterflies

The present status of the knowledge of the Kyabobo butterflies is given in table 2.2.2. Just over 400 species have been positively recorded and a total of nearly 500 are expected. Thanks to the rather extensive collecting activities listed in section 2.2.1, the actual figure is 81% of the estimated total, which lends support to the validity of that estimate.

As shown in appendix 2, no less than 17 species were originally described by Karsch (1893) from the Bismarckburg area in Togo, which is effectively the same as Kyabobo. In addition *Iolaus (Etesiolaus) kyabobo* Larsen, 1996 was described from near Shiare and *Anthene starki* Larsen, 2005 from Koue. None of these species are endemic, however, and many have a wide African distribution.

Table 2.2.2. Summary of the number of the butterfly species known and estimated in Kyabobo National Park (based on a total of 925 Ghana species as enumerated in Appendix 1a (Larsen 2006)).

Estimated total butterfly species in Kyabobo National Park	494	
Species that have been positively recorded and accepted Species almost certain to occur 87 (75% included in estimate)	401 66	
Species that possibly occur 103 (25% included in estimate)	27	
Species that almost certainly do not occur 299 (none included) % of estimated total positively recorded: 81%	0	

The total estimate of 500 Kyabobo species constitutes 80% of all the butterflies known from the Volta Region (the 400 positively recorded comprise 63%). It is clear that those missing are especially the group that is most linked to the wetter forest types found in the central mountains, well south of Kyabobo and still with higher annual rainfall. The most spectacular of those absent from Kyabobo is the giant African swallowtail, *Papilio antimachus* Drury, 1782, which is probably now extinct in the Volta Region since it needs relatively large, wetter forests in good condition. Some other absentee species from the central mountain area listed in appendix 1 are: Pentila hewitsonii Grose-Smith & Kirby, 1887, Pseuderesia eleaza Hewitson, 1873, Kakumia otlauga Grose-Smith & Kirby, 1890, Spindasis crustaria Holland, 1890, Iolaus likpe Collins & Larsen, 2004, Iolaus theodori Stempffer, 1979, Deudorix kayonza ssp., Anthene lysicles Hewitson, 1874, Neurellipes lusones Hewitson, 1874, Charaxes hildebrandti Dewitz, 1879, C. porthos Grose-Smith, 1883, Euriphene atossa Hewitson, 1865, Coeliades bixana Evans, 1940, Abantis leucogaster Mabille, 1890, Gorgyra afikpo Druce, 1909, and Ceratrichia argyrosticta Plötz, 1879. But, in truth, the known fauna makes is rather difficult to be definitive about excluding that any butterfly from the central mountains is genuinely absent from Kyabobo.

The relative lack of species centred on the wetter forests is also well illustrated in the analysis of the ecological elements in the Volta Region butterfly fauna (table 2.2.3). Only one third of those centred on the wet evergreen forests (WEF) that are present in the Volta Region as a whole are found in Kyabobo: the Volta representation of this element in relation to Ghana as a whole is already low, so only 11% of all Ghana WEF species are present in Kyabobo. Even the representatives of the moist evergreen forests (MEF), that with almost 80% are well represented in the Volta Region as a whole, is under-represented in Kyabobo with just half of the Volta total.

Ecological zone (from appendix 1)	Ghana total	Volta Region	Kyabobo actual	Volta as Ghana	Kyabobo % Volta
WEF – wet evergreen forest	245	77	28	31%	36%
MEF – moist evergreen forest	271	213	103	79%	48%
ALF – all forest types	172	160	135	93%	84%
DRF - dry forest specialists	68	55	35	81%	64%
GUI – Guinea Savannah*	82	81	56	98%	69%
SUD – Sudan Savannah	48	19	12	40%	63%
UBQ – ubiquitous species	33	33	32	100%	97%
??? - not assigned/error	6	3	n.a.	n.a.	n.a.
TOTAL	925	641	401	70%	63%

Table 2.2.3. The ecological composition of the butterfly in Ghana, Volta Region, andKyabobo National Park.

* includes 4 species of special habitats

The dearth of the wettest-adapted species also leads to an absence of all but two of the seven species that are endemic to the Volta Region (table 3.3.2a). Six of the just 17 endemics from Africa west of the Dahomey Gap that reach the Volta Region are missing (table 3.3.2b). About half of the interesting group of species that are in the Volta Region as well as in Nigeria and further to the east, but not crossing the Volta River into Ghana proper, is also missing from Kyabobo (table 3.3.3). It must be remembered that the above data are calculated on the 400 species positively recorded and not on the 500 estimated to be present.

However, the above analysis does not mean that Kyabobo National Park lacks rare and interesting species that are not often found in collections. Graphium almansor carchedonius Karsch, 1895 is a well-defined endemic subspecies of a rare species found in dry forests also in the northern parts of the main equatorial zone; it was recently collected also in the Fouta Djalon of Guinea, in what seems to be a distinct subspecies (Larsen 2005). Aslauga ernesti Karsch, 1893 is very poorly known from the Volta Region and Nigeria, but was recently caught on hill-tops near Likpe in the central mountains. Aslauga imitans Libert, 1994, Spindasis avriko Karsch, 1893, Iolaus maesa Hewitson, 1862, and Pilodeudorix catori Bethune-Baker, 1903 are generally rare in collections and not often met with in nature. *Neurellipes gemmifera* Neave, 1910 was not known from West Africa till Father Maessen caught some in the Likpe area, and the author found a few at water near Shiare. *Bicyclus campa* Karsch, 1893 is a species that is localized in hill tracts like Kyabobo and found only patchily between the Fouta Djalon in Guinea all the way to East Africa. Henotesia elisi Karsch, 1893 was described from the central mountains of Volta, but also occurs sparingly in Kyabobo; it is the only *Henotesia* in West Africa. Sevenia umbrina Karsch, 1892 is rather parallel with *B. campa* in distribution and rarity. One of the large *Euphaedra sp.* in the park remains uncertain - it appears to be related to local species found in the Kagoro Forest and Gashaka-Gumpti National Park in Nigeria, but more material is needed from all three

populations before conclusions can be drawn. *Acraea eugenia* Karsch, 1893 can be abundant at both Wli Falls and Kyabobo but seems very rare elsewhere: the only Nigerian record remains one taken in 1968 by the author's mother – completely by chance since she knew nothing about butterflies. *Eagris tigris liberti* Collins & Larsen, 2005 is a new subspecies that is always scarce, but occurs at both Wli Falls and in Kyabobo. *Abantis pseudonigeriana* Usher, 1984 and *Leona stoehri* Karsch, 1893 are very scarce skippers of which only a handful is found in collections.

2.2.3 Conservation value of Kyabobo National Park

With an estimated 500 species of butterflies – just under 80% of the Volta Region total – there is no doubt that the park is a welcome addition to the protected areas system in Ghana. It is likely that unvisited patches of semi-deciduous forest remain to be discovered, where collecting will yield additional interesting species. And most of the park is relatively undisturbed with the vegetation in good condition.

Dowsett-Lemaire & Dowsett (2005) also found a rich bird fauna and emphasize that "as the area had been virtually unexplored, all observations of forest birds represent range 'extensions', in some cases quite considerable." The forests of Kyabobo are indeed interesting as being among the northernmost in Ghana, though the above quotation overestimates the lack of exploration since the Bismarckburg data from the 1890s can effectively be considered part of the same habitat.

The linkage with the German researches in Bismarckburg gives both Kyabobo National Park and Fazao-Malfakassa National Park a historical link. The comparison of the present Kyabobo fauna with that listed by Karsch (1893) which is made in appendix 2 would be impossible almost anywhere else in Africa. Future researchers in Kyabobo National Park should be sure to check whether their group of interest was part of the extensive publications to result from the German research.

2.3 Ecotourism potential

During the rainy season the mountain ranges of Kyabobo are a beautiful sight from the distance. The dark woodland and forest of the mountain slopes contrasts with the lighter tall-grass savannah. As shown in fig. 2.3.1, the views can epitomize the desire for undisturbed wilderness. The reality of the ecotourism potential of the area is perhaps less rosy. There are a number of constraints.

- Even with the new roads, Kyabobo is rather far away from other tourist areas. Tourist facilities are nearly non-existent, though a few reasonable hotels were recently opened.
- Access to the most interesting parts of the park remains somewhat difficult, usually involving one or two hours' walk through various types of less interesting farmbush. The tall-grass savannah until about 09.30 retains sufficient morning dew to wet walkers to the skin.
- During some periods of the year biting insects can be a serious nuisance as described by Dowsett-Lemaire & Dowsett (2005), though the author did not find this a major issue in the months of January and August.

- Opportunities for seeing large animals of any type are almost absent, though the decrease in hunting may improve on this. However, because the savannah is mostly tall-grass in structure, animal viewing is largely limited to the dry season.
- There are few outstanding natural features of special beauty or other attraction, though the Laboum Waterfall (not personally visited) would probably qualify.

It is probably true to say that the park holds little attraction for ordinary tourists without special interests, except for its status as a genuine wilderness.

Dowsett-Lemaire & Dowsett (2005) see "little future for birding ecotourism in Kyabobo". Most birders are fixated on seeing as many species as possible and are generally less interested in the ecology and behaviour of their study objects than are other naturalists. All the birds found in Kyabobo can be just as easily seen on the usual tourist destinations, such as Kakum, Atewa Range, Bobiri, Mole, etc.

Other naturalists, including butterfly collectors, could spend time in the park in a both pleasant and productive manner, but again practical difficulties are greater than would be the case in many other localities.

Fig. 2.3.1. Guinea Savannah with woodland-covered hills at the Laboum outpost in Kyabobo National Park.

The Pawa Satellite Camp has some potential for tourism. The access trek is not too long or difficult and the camp allows visitors to sleep in comfort in the middle of the forest. Camps such as Pawa could also be used for scientific research projects. The Pawa Camp is surrounded by a small area of now abandoned farmland, which is beginning to revert to secondary forest, right next to the semi-deciduous forest. Such a vegetation mix is often even more diverse than pristine forest. Butterflies are quite plentiful around the camp and it would be possible to plant good nectar plants and to improve slightly some of the paths, making the camp area more congenial to non-specialist visitors.

Hiking is another tourist possibility where Kyabobo would be suitable. The walk from Koue-Nazeni to Pawa is apparently just about right for a day's hike, and it should be possible to reach the Laboum area on a second day. The fact that such a hike could be undertaken without seeing other people at all along the way is a strong point. Some of the Wildlife Division staff seem genuinely knowledgeable even about unexpected aspects of nature and make good, cheerful walking companions (the author received surprisingly detailed information on several species of ants, their habits, and feeding strategies from one of the Pawa staff).

The possibility of cooperating with the authorities in Togo on the historical aspects of Bismarckburg might be investigated – this would certainly be an attraction for German tourists.

But, as mentioned in the main report, the importance of the protected areas system for tourism lies not just in the actual number of tourists that avail themselves of the possibilities. It is also a question of giving tourists the knowledge that such possibilities exist and are part of a wide range of choices facing the visitor.

3. THE VOLTA REGION

3.1 The Volta Region setting

The Volta Region in the sense used in this report is bounded to the west by the Lake Volta, which used to be a river edged by riverine forest. This forest was submerged by the lake and has generally not regenerated. To the south it is bounded by the sea. In the central parts are mountain ranges reaching 700-800m in places. The Volta Region as used in this report includes also the mountainous part of western Togo. The eastern border is rather diffuse: it lies along the line that divides the dense savannah woodland at the eastern foot of the mountains from the savannahs of the Dahomey Gap. The northern border runs along the level of latitude 8° which is about that of the northern limits of Kyabobo National Park. Between 1883/84 and 1914 both the Ghana and Togo parts of the region were administered jointly by Germany.

The ecological zonation of the Volta Region differs from that of the rest of Ghana because of the presence of the mountains. Without the mountains the entire Volta Region would have been part of the Dahomey Gap, the tongue of savannah stretching through most of Togo and Bénin, connecting the main savannah zones directly with the sea, and in fact broadening near the sea, creating the Accra Plains and even allowing savannah elements to penetrate west to Cape Coast and beyond and east to the Lagos area. The mountains fall in a central range that stretches north from the level of Ho to Hohoe/Jesikan (the Misahöhe of German literature). The northern range (the "Adelihöhe" of German literature) begins south of Kyabobo National Park, but the bulk is within the park, extending into the Fazao-Malfakassa National Park in Togo. The mountains contain isolated eastern extensions of the West African forest zone that stretches from the Basse Casamance in Senegal to Ghana. Not only are these geographically isolated, they are also separated from the main forest zone by the savannah that more or less surrounds the forests. They have been isolated for sufficient periods of time to develop a flora and fauna that in many respects differ from those of the rest of the forest zone west of the Dahomey Gap. The butterfly fauna clearly illustrates that the Volta River has – probably during several pluvial periods – been a significant biogeographical feature; at the same time the butterflies illustrate that the mountains were, and still are, important, isolated refuge areas for the forest fauna – probably during several dry periods.

<u>The southern zone</u>: As mentioned, the southern part of the Volta Region is savannah country that forms part of the Dahomey Gap, which stretches from the coast north to the beginning of the central Volta mountains at the level of Ho. The bulk of the area is Guinea Savannah formations, but there are also areas with low grass and some Sudanian floral and faunal elements, as well as miscellaneous areas of scrubland. Locally, patches of the southern and southeastern forest outlier forest types that have a significant amount of plant endemicity may be found; this habitat allows some forest butterflies to occur in unusually dry locations, best known from the fauna of the Shai Hills, but otherwise seems not to contain any special butterflies. At the northern limits of this area lies Kalakpa Resource Reserve (320 km²), which is the only area where the butterflies have been studied (see Larsen 2006:section 4.1.9 for details). The northern parts of Kalakpa has considerable expanses of riverine forest along the vestiges of streams that originate from the central mountains – the forests are to the north of the riverine forest, whereas elsewhere in Ghana the savannah lies north of the forest zone, which is an unusual reversal. With 75 species Kalakpa has more forest butterflies than any other savannah locality in Ghana.

<u>The central mountains</u>: These mountains were once largely covered by versions of semideciduous forest, ranging from moist to dry. Not surprisingly this area has a higher proportion of "wetter" flora and fauna than do the mountains further north around Kyabobo. The topography is very varied as is the vegetation. Within living memory the forests have been severely logged – often clear-felled – or degraded to the point where little of the original cover remains in good condition. Only one tiny locality, Wli Falls/Agumatsa Wildlife Sanctuary (3km²) (see Larsen 2006:section 4.1.15 for details), is within the protected areas system. It seems that a few other forests are under some sort of community protection, but the overall situation seems unsatisfactory since there is no doubt that true forest butterflies and other faunal elements are the most interesting component of the Volta Region fauna.

<u>The northern mountains</u>: This area commences somewhere north of the Jasikan area (the author is not familiar with this area). The main mountains begin some way south of the small town of Nkwanta. The northern mountains, as might be expected in view of lower rainfall, have a less developed forest structure and less representation of dedicated forest species. The Kyabobo National Park (218km²) is at the northern end of the mountain range, covering a wide range of ecotypes from Guinea savannah to dense woodland and patches of semi-deciduous forest, most of it in good condition. More detail is given in chapter 2 of this report.

3.2 History of butterfly collecting in the Volta Region

As discussed in Part I of this report and in appendix 2 on the collections published by Karsch (1893), the Volta Region was the subject of the most extensive butterfly collecting published from tropical Africa at the time, with more than 200 species recorded. From the 1950s to the 1970s Father Maessen was based variously in Ho and Anfoega, but especially in Likpe-Mate (10km from Wli Falls). He amassed a huge collection that was given to the Allyn Museum of Entomology in Sarasota, Florida (now housed in Gainesville) (studied by the author on two occasions). Most of his material is from the central mountain area. He did collect at Wli Falls, but most of his records are from forests that have since been degraded or have disappeared. Many interesting species were caught in the Amedzofe area, with Africa's largest butterfly, Papilio antimachus Drury, 1882, taking pride of place: the forests have since been much reduced in size as well as quality and the butterfly seems to be extinct in the Volta Region. Maessen's collecting in the Volta Region probably qualifies as the most intensive by any single individual in tropical Africa. The quality of his material was strongly improved by continued encouragement to collect various "difficult" groups by H. Stempffer, L.A. Berger, and L.D. Miller. From Kpalimé in Togo, West (1992) published a list of about 150 species that did not include any not found in Ghana. Between 1996 and now the African Butterfly Research Institute, Nairobi received a large number of butterflies from the Volta Region, all from the central mountain area; it was not possible for the author to screen all of these, but most species previously unknown from the region were probably intercepted. Finally the author collected several times at Wli Falls, once in Kyabobo, and in a number of other places between 1994 and 2000. On the present mission a few additional species were found at Wli Falls and in Kyabobo by the author and H. Boersma, but before that many additional species were added to the Kyabobo list by R. Vorgas, who was sent as part of the preparation for the present mission.

3.3 Review of the Volta Region butterfly fauna

3.3.1 Total butterfly fauna

As a result of all the activities mentioned in the previous section, the total number of butterflies known from the Volta Region is 641. This comprises 70% of all species known from Ghana. As shown in table 3.3.1 the bulk of the missing species are accounted for by two groups: 1) 150 "bi-regional species" that are found in the forests both west and east of the Volta Region, but which do not occur in the region itself; and 2) 76 endemics of the forest zone west of the Dahomey Gap that do not penetrate east of the Volta River (of the 100 endemics, 7 are Volta endemics). These two cases of absence are one of the major characteristics of the Volta fauna.

Categories		Species num		
Confirmed species from the Volta Region		641	70%	
Categories of species absent from Volta Region				
Possible species and uncertain status	38			
Bi-regional species missing (2x2)	150			
WA endemics missing (ww)	53			
Ghana endemics missing (en)	23			
Savannah species missing (sav)	20			
Ghana species absent for Volta		284	30%	
Total Ghana species		925	100%	

Table 3.3.1. The total Volta butterfly Fauna and an analysis of those missing.

Of the 150 bi-regional species that are absent from the Volta Region, but which occur in forests on both sides, 108 were classified as belonging to the wetter evergreen forests (WEF) in the annotations used by Larsen (1994): that is 72% of the missing total: in all 246 (26%) of Ghana's 925 butterflies are classified as WEF, but only 77 (12%) of the Volta Region's 641 species belong to this category. Even if the 1994 designations may need of revision, it is clear that the species missing from the Volta Region are heavily biased towards those of the wetter forests in good condition, and that also applies to the missing endemics. The presence of 77 species classified as MEF, on the other hand, does indicate that there may well in earlier times have been more than today, some of which have become locally extinct during dry climatic periods. Among conspicuous absentees are: Graphium tynderaeus Fabricius, 1793, Appias phaola Doubleday, 1847, all the Ornipholidotos, Eresiomera isca occidentalis Collins & Larsen, 1998, Liptena similis Kirby, 1890, all the Falcuna, Neurellipes fulvus Stempffer, 1962, Bicyclus evadne Cramer, 1779, B. trilophus jacksoni Condamin, 1961, Charaxes hadrianus Ward, 1871, C. nobilis claudei le Moult, 1933, Vanessula milca Hewitson, 1873, most of the Cymothoe, Bebearia demetra Godart, 1824, B. cutteri Hewitson, 1865, Euphaedra eleus Drury, 1782, Acraea vesperalis Grose-Smith, 1890, Katreus johnstoni Butler, 1888,

Celaenorrhinus meditrina Hewitson, 1877, Osmodes costatus Aurivillius, 1896, O. banghaasi Holland, 1896, Pteroteinon iricolor Holland, 1890, P. laterculus Holland, 1890, Leona binoevatus Mabille, 1891, and Caenides dacenilla Aurivillius, 1925.

Table 3.3.1 showed that only 70% - 641 species – of Ghana's butterflies are known from the Volta Region, and the previous paragraph demonstrates a conspicuous absence of the species belonging to the wettest habitats that are found in both Ghana proper and in Nigeria and further east. This pattern is confirmed by table 3.3.2, which shows that only a third of all Ghana's butterflies that are centred on the wet evergreen forest zone (WEF) are found there. More than 90% of the species that are distributed in all types forest are found in the Volta Region.

Ecological zone (from appendix 1)	Ghana total	Volta Region	Volta as % Ghana	
WEF – wet evergreen forest	246	77	31%	
MEF – moist evergreen forest	271	213	79%	
ALF – all forest types	172	160	93%	
DRF - dry forest specialists	68	55	81%	
GUI – Guinea Savannah*	82	81	98%	
SUD – Sudan Savannah	48	19	40%	
UBQ - ubiquitous species	33	33	100%	
??? – not assigned/error	5	3	n.a.	
TOTAL	925	641	70%	

Table 3.3.2. The ecological composition of the butterfly inGhana compared to the Volta Region.

* includes 4 species of special habitats

Of the 641 butterfly species in the Volta Region, 474 have been found inside the three localities of the protected areas system, constituting 74% of the total. This is considerably less than for the forest region as a whole, where 80% have been positively recorded from the protected areas system, though total numbers there are considerably higher. The relatively low percentage is due mainly to the fact that the only location in the central mountain area is the tiny Wli Falls Wildlife Sanctuary. The protection of endemic species, and those not crossing the Volta River to the west, is even poorer, as shown in sections 3.3.2. and 3.3.3.

3.3.2 Endemics of Africa west of the Dahomey Gap

A total of 100 species in Ghana are endemics of Africa west of the Dahomey Gap (11%). They fall in three categories as follows:

•	Endemics to West Africa as a whole	67 species
•	Endemics to the Ghana subregion	26 species
•	Endemics to the Ghana/Togo mts.	7 species
•	TOTAL	100 species

Only 24 (24%) of these are known from the Volta Region, which includes the 7 that are strict Volta Region endemics. The strict endemics are listed in table 3.3.2a below, the remaining 17 in table 3.3.2b:

Table 3.3.2a. An annotated list of the butterflies endemic to the Volta Region.

Papilio nobicea Suffert, 1904 was described from "Togo" and is quite common in the Volta Region, with records from both Kyabobo and Wli Falls. It is just possibly that records from the Atewa Range are true, which would then match the distribution of *Acraea translucida* Eltringham, 1912. The species is commonly known as *P. maesseni* Berger, 1974, a junior synonym.

Telipna maesseni Stempffer, 1970 (TL Likpe) is quite common in the Volta Region and neighbouring Togo, including Kyabobo and Wli Falls.

Cephetola maesseni Libert, 1999 is so far known only from a small series from Likpe (TL), collected by Father Maessen.

Iolaus theodori Stempffer, 1970 is known from Ho, Likpe, Anfoega (TL), and Kpalimé in Togo from Father Maessen's collection and no new material has been found.

Iolaus likpe Collins & Larsen, 2004 is known from a single specimen bred from larva by Father Maessen from his Likpe (TL) garden.

Capys vorgasi Collins & Larsen, 2004 was collected in some numbers in the area around Likpe by R. Vorgas in 2000/2001. It feeds on *Protea* (Proteaceae).

Junonia hadrope Doubleday, 1847 is a remarkable butterfly that has "West Africa" as its type locality, but it is effectively a Volta Region endemic. It was found in 1995 near the Akosombo Dam but has otherwise proved very elusive (see fig.3.3.2).

Only *Papilio nobicea* and *Telipna maesseni* are known from within the protected areas system, or just a quarter of the seven. Again the reason is the absence of forest in the central mountains within the protected areas system. The endemic species testify to the forest in the Volta Region having been isolated during periods when savannah covered most of Ghana, the forest fauna having retrenched to small refuge areas around Ankasa/Assinie and on the Atewa Range.

In all, 17 of the remaining 93 species that are endemic to Africa west of the Dahomey Gap and are present in Ghana are found in the Volta Region. That is only 18% of the total endemics. Just three of these are among the 26 Ghana subregional endemics. The underlying reason must be that the endemics evolved in the narrow refuges that remained during very dry

climatic spells and that most became adapted to the wetter forest types that do not occur in the present Volta Region. These 17 species are listed in table 3.3.2b below.

Fig. 3.3.2. Left is the most distinctive endemic species of the Volta Region in the form of *Junonia hadrope*. To the right is its presumed closest relative in the form of *Junonia westermanni*, which is found throughout the African forest zone, including Volta Region. Their exact relationship and its timing will need DNA studies that can only be conducted if fresh material continues to be available. At present *J. hadrope* seems to be very rare.

Table 3.3.2b. An annotated list of the butterflies that are endemics to Africa west of the Dahomey Gap, including the Volta Region and their presence in the protected areas system.

Mylothris poppea Cramer, 1777	KYA	WLI	
Pentila phidia Hewitson, 1874	KYA	wli	
Stempfferia dorothea Bethune-Baker, 1904		WLI	
Stempfferia leonina Staudinger, 1888			
Hypolycaena clenchi Larsen, 1997	kya	WLI	
Pilodeudorix aurivilliusi Stempffer, 1954			
Lepidochrysops synchrematiza Bethune-Baker, 1923	kya	wli	
Bicyclus maesseni Condamin, 1971	KYA	WLI	
Henotesia elisi Karsch, 1893	KYA		
Protogoniomorpha cytora Doubleday, 1847	KYA	WLI	
Euphaedra phaetusa Butler, 1866	KYA	WLI	KAL
Euphaedra inanum Butler, 1873			
Euphaedra eupalus Fabricius, 1781			
Astictopterus anomoeus Plötz, 1879			
Acleros bala Berger, mss.			
Paracleros placidus Plötz, 1879	kya	WLI	
Platylesches rossi Belcastro, 1986			
Turyresenes rossi Deleusuo, 1900			

The reason for the massive absence of the western endemic species is again that the bulk of these are adapted to the wettest habitat types. It is hardly surprising that species evolving in isolation might be less mobile than other species, but it is also quite likely that some additional endemics used to be in the Volta Region in more mesic climatic periods but have since retreated again.

3.3.3 Eastern species not found west of the Volta River

One of the most fascinating elements in the Volta Region butterfly fauna are the 15 species that occur in the region and extend eastwards to the Niger Delta, or to western Cameroun, and in some cases well into the equatorial forest zone, even as far as Uganda and Zambia. They never crossed the Volta River. The Volta populations of such species are now quite cut off the rest of their ranges by the Dahomey Gap and they are witnesses to two separate biogeographical facts: 1) they testify to climatic periods when forest bridged the Dahomey Gap sufficiently to allow faunal interchange with the east, and 2) they testify that the Volta River constituted a genuine and significant biogeographical barrier.

Table 3.3.3. An annotated list of the butterflies that in Ghana are limited to the Volta Region but that extend eastwards to Nigeria, Cameroun, or equatorial Africa.

Aslauga ernesti Karsch, 1995 (TL Misahöhe) was described from somewhere in the central parts of the Ghana/Togo Mountains and has been found at Kabba in western Nigeria. It was recently found in the Likpe area. It has not been recorded from within the protected areas system [it actually seems to have been collected at Bismarckburg].

Aslauga imitans Libert, 1994 (TL Amedzofe) has also been found in the Likpe area and the author collected a single male in Kyabobo National Park. The range extends to western Cameroun.

Mimacraea maesseni Libert, 2000 (TL Volta Region) is widespread and rather common in the Volta Region, where known from Wli Falls and Kyabobo. The range extends to western Nigeria.

Liptena pearmani Stempffer, Bennett & May, 1974 (TL Ubiaja, Benin) is widespread but rare in western Nigeria. A specimen of *L. decipiens* recorded from the Bismarckburg area by Karsch (1893) must be this species, described long after Karsch's list was made.

Larinopoda aspidos Druce, 1890 (TL Lagos) is common in the Volta Region but is wholly replaced by *L. eurema* Plötz west of the Volta River. It is known from Kyabobo and Wli Falls; it was interesting to see that it also represented the genus in Kalakpa. It is also found in eastern Nigeria, but not in the Cross River loop and Korup.

Iridana hypocala Eltringham, 1929 TL Uganda, Jinja) is found through much of equatorial Africa and was recently found somewhere in the Volta Region by collectors from ABRI. *Spindasis crustaria* Holland, 1890 was once found at Likpe by Father Maessen and extends to much of equatorial Africa. It has not been found within the protected areas system. *Iolaus parasilanus maesseni* Stempffer & Bennett, 1958 was described from Ho. The Ghana subspecies extends to Nigeria and other subspecies occur in much of equatorial Africa. *Iolaus fontainei* Stempffer, 1956 (TL northeast Democratic Republic of Congo) is widespread in the equatorial Africa, but also known from SE Nigeria and Likpe and Amedzofe in the Volta Region.

Oboronia pseudopunctatus Strand, 1912 (TL Cameroun) is rather scarce but widely distributed in the Volta Region, including Wli Falls. Its range covers most of the equatorial Region.

Bicyclus italus Hewitson, 1865 (TL Old Calabar) is found in the Nigeria/Congo/Cameroun area but also in the Volta Region where it entirely replaces *B. zinebi* Hewitson, 1865, which replaces it west of the Volta River. It is recorded from Kyabobo, Wli Falls, and Kalakpa. *Bicyclus sylvicolus* Condamin, 1865 (TL Cameroun) is found in the Volta Region, Nigeria, and the extreme west of Cameroun. It is replaced by *B. abnormis* Dudgeon, 1909 west of the Volta River, which as the name implies is rather different from other members of its group. *Neptis angusta* Overlaet, 1855 (TL Sankuru, Democratic Republic of Congo) was found at Likpe in Ghana and identified by M. Condamin. It extends east to eastern parts of equatorial Africa.

Euphaedra ruspina Hewitson, 1865 (TL Old Calabar) has been found in several localities in the Volta Region and Togo and extends east to all of equatorial Africa. It is known from Wli Falls. That this large, powerful, and widely-distributed species has not been able to cross the Volta River is most amazing (photo in fig. 3.3.3).

Acraea eugenia Karsch, 1893 (TL near Bismarckburg) may be common at Wli Falls and Kyabobo. It has been found a few times in numbers in Cameroun, but otherwise there are just singles from Nigeria and various locations in equatorial Africa.

In addition to the species listed in the table, *Acraea translucida* Eltringham, 1912 is also on the Atewa Range one the other side of the Volta River, while stretching east to the Nigeria/Cameroun Mountains. Another species, *Bebearia cocalia continentalis* Hecq, 1988 occurs in the region in a form closer to the Nigerian than to the west of the Volta River. *Anthene wilsoni* Talbot, 1935 was collected recently near Likpe, but this should probably be considered a Guinea Savannah butterfly – the nearest records are from dry zones in Uganda and Kenya. Of the 15 species listed in the table, 7 have been found in the protected areas system (47%).

Fig. 3.3.3. The large, powerful *Euphaedra ruspina* is found in the Volta Region and in most of the African forests, but has not managed to extend west across the Volta River.

3.4 Biogeographical summary

The role of the Volta River as a biogeographical barrier and the role of the Volta Region as an independent biogeographical feature has been the subject of a fair amount of discussion. In their in-depth investigations of the flora, Hall & Swaine (1976, 1981) do not pay much attention to this issue, seemingly treating the forests as a "poor relation" of those in Ghana proper; they devoted more attention to the southern and southeast outlier forests and some of their endemic elements. In his mammal studies, Booth (1954, 1958) found that both the Volta Rivers and the mountains had played an important role in the evolutionary processes of West Africa. In his detailed review of tree-frogs, Schiøtz (1967) found the similar patterns to those deduced by the author. On mammals, Grubb (1982) and Grubb *et al.* (2002) take a somewhat detached view of this issue. Biogeographical aspects do not seem to have been of particular interest to ornithologists, though the same patterns as in butterflies may well prevail.

The present composition of the Volta Region butterfly fauna is a snapshot reflecting processes of climatic and ecological changes that have taken place at least since the Pliocene and probably even since the late Miocene. The fauna represents the residual evidence of at least several million years. The large number of species found both to the west and to the east of the Region, which are at present absentees, indicates that the area was once wetter and better forested than it is today. Many – even most – of these were probably present in more mesic times. The endemic species indicate that during one or more dry periods, including the most recent, the mountains of the region retained forests while most of Ghana converted to savannah vegetation – at such times also the Atewa Range in Ghana and the Nimba Mountains in the Liberia subregion remained forested, isolated by savannah from the main Liberia and Ghana refuges. The endemic species as well as those that have a distribution stretching east without crossing the Volta River, testify to the role of the Volta River as a biogeographical barrier of some significance. The butterfly data seem impossible to reconcile with the statement by Rödel & Agyei (2003?) that "within the Volta region, there were no Pleistocene forest refugia at all (Rompaey 1993, Parren & De Graaf 1995).

As discussed in section 2.1 of the companion report (Larsen 2006), in a rough and ready manner every butterfly can act as a proxy for 800 other organisms about most of which we know practically nothing, using fairly conservative estimates. The 640 species recorded from the region would thus indicate a total of just over 500,000 different species, more than 90% of which remain undescribed. Given the complex biogeography of the area it is urgent to ensure that this biodiversity is preserved so that it can be used for future studies – not least those using dating through DNA studies, which may shed much light on evolutionary processes in West Africa.

3.5 Conservation priorities in the Volta Region

As emphasised in chapter 2 the new Kyabobo National Park should be adequate for the preservation of the existing butterfly fauna in the northern part of the region. Similarly, Kalakpa Resource Reserve should preserve the savannah and, especially, the largest extent of riverine forest in Ghana, except perhaps for Digya National Park. However, the best developed semi-deciduous rainforests on the central Volta Region Mountains are only formally protected by the tiny Wli Falls Wildlife Sanctuary. As a consequence of this, fewer of the most interesting, rare, and endemic butterflies are present within the protected areas system than anywhere in the rest of Ghana.

The major problem is that no large tracts of the semi-deciduous forest in good condition actually remain anywhere in the area – and yet its preservation for the future is urgent. There are a number of small community-based nature sanctuaries that have not been visited by the author due to lack of time (the Mt. Afadjato area was briefly visited in 1994). One visit was paid ten years ago to another small waterfall near Wli, but the flora was degraded and the fauna was poor. Other community based conservation projects are based on the sacred monkeys in the Tafi Atome Sanctuary and around the waterfalls of Tsatsadu and Tagbo (Liati-Wote). It would seem that to the extent possible all remaining tracts of forest in the central mountains should somehow be tied together to form a loose network of sanctuaries under local management by the forestry departments or local communities. It may well be too late create further formally protected areas. The mapping of such a network would need a considerable amount of field research. However, it would be a worthwhile effort given that the Volta Region has considerable potential for tourism development, where nature would have to play a major role. The tourism "carrying capacity" of Wli Falls is quite limited: but the Falls do show that conservation and tourism can be combined. The task of surveying potential localities, and tying them together to a coherent whole under a variety of management systems from government to local communities and private enterprise will not be easy. However, for conservation of the unique biodiversity of the Volta Region and as a basis for long-term tourism development, it is an urgent need.

In this respect it is worth quoting Rödel & Agyei (2003), based on herpetological studies, who mirror the author's own views:

"We also could not find larger tracts of closed forests in the Volta region. This explains the lack of several primary forest specialists in our records. In fact most of the "forest" species we found prefer forest edges, natural disturbances within forests (e.g. tree fall gaps), or so called farmbush habitats (compare section 6). The high percentage of farmbush species in our list is a clear hint that the natural forest cover has been largely destroyed in many areas, probably for quite some time. However, since we could still find some true forest specialists (especially around Wli and Shiare) there seem to be some relict populations in those areas where at least smaller, well protected forest remnants are present. Those forests are not necessarily part of officially protected areas such as the new Kyabobo National Park. It seems that communally protected forests, including so called sacred groves (Decher 1997, Decher & Bahian 1999, Decher et al. 2000), might play at least an equal role in the maintenance of natural diversity within the Togo/Volta region.

Future conservation efforts should encourage all local activities that are likely to preserve these forests. Additionally all larger remaining forest areas in the Volta region should be given highest conservation priority and efforts should be considered to link or buffer smaller forest remnants through reforestation efforts."

Finally it should be re-emphasized that in the workshop organized by Conservation International at Cape Coast in 1999 participants from several disciplines from Ghana, as well as Togo, and elsewhere made a strong plea for the importance of conserving the natural habitats of the Volta Region, not least from the biogeographical perspective (Bakarr *et al.* 2001).

3.6 Ecotourism

The Volta Region has a significant tourism appeal. The landscapes, vegetation, and agricultural patterns are pretty and varied. Some of the views from the higher parts of the central mountains are stunning (see fig. 3.6.1). The profusion of flowering trees, not least the frangipani in the cemeteries and the jacaranda and flame trees in the villages, are unique in the wetter African tropics. A number of small nature sanctuaries and cultural attractions are being managed by NGOs or local communities. Most of these are not major attractions, but they are pleasant and interesting diversions for visitors from Ghana as well as from abroad. Most visitors from abroad who visit Africa do wish to have experiences in nature, not as dedicated ecotourism but as part of a well-rounded total experience.

Ecotourism in its strictest sense is a limited, though fast-growing, sector of the tourist market. The largest sub-sector is definitely bird watching. Butterfly collecting and butterfly watching come much lower down the list with a potential of less than a tenth that of birds.

The three Volta localities of the protected areas system have differing appeals and different potential audiences:

<u>Kalakpa Resource Reserve</u> is not that far from Accra but rather difficult of access by public transport. The park affords beautiful views over Guinea Savannah with low scarps and ridges, especially in the north around Zitoe and Agodake. The reserve must be congratulated for a well-laid network of excellent nature trails, as well as a clean boundary line. These are just right for visitors, being genuinely wild and yet relatively easy to walk. The bird fauna of the riverine forest bands is considered "surprisingly rich" in forest elements by Dowsett-Lemaire & Dowsett (2005). During the dry season larger mammals can apparently be seen with relative ease. As with most of savannah habitats butterfly watching is usually not very good, though the Zitoe Camp clearing could be planted with the nectar plants for butterflies.

Kalakpa is best visited by private car and is perhaps best marketed towards residents of Accra, both Ghanaians and expatriates. The reserve is part of the Dahomey Gap, which is an interesting physical/visual feature as well as an important biogeographical boundary. The Dahomey Gap, its geological history and its present role, is a good attraction for visitors, as is also the case for the Shai Hills (it should be a major theme for the evolving museum there).

<u>Wli Falls/Agumatsa Wildlife Sanctuary</u> has all the elements of a good visitor site. It is beautifully situated in one of Ghana's prime tourist areas and is readily accessible by public and private transport. The three kilometre track to the waterfall, crossing the small river on a dozen occasions, leads through a varied sample of forest in reasonable condition. The contrast between forest and degraded lands will immediately be evident to visitors. The waterfall – probably the tallest in Ghana – is of great beauty and the open space at its foot is excellent for relaxation and picnics. Swimming is possible, though the water is remarkably cold. The fruit bats colony to the left of the falls is an additional attraction (poaching must be stopped). The fact that uniformed guides are part of community participation is an added attraction for many visitors from abroad (half an hour was spent with guides and visitors and the guides seemed to do a good job). During the past few years three or four small hotels have been built providing paid employment for a number of workers.

The Bradt Guide (Briggs 2004) states that "the butterflies were dazzling", and this view has spread (On Google the combination "Ghana Wli Butterfly" yields 140 hits). During the author's several personal visits the average number of species recorded in a day was usually around 150 – more species than in most European countries. At times huge numbers come

mud-puddling at the edge of the stream and in the open space near the waterfall. Planting good nectar plants at the edges of the waterfall clearing could enhance butterfly watching, and possibly one or two permanent feeding stations for fruit-feeding butterflies could be set up. However, on the whole the butterflies are doing visitors proud without needing help. There is no reason why Wli Falls should not be marketed on its butterflies as well as the waterfall.

The main problem with Wli Falls is that it will soon reach the limits of its absorptive capacity for tourists. With just the one access path and with one open area at the waterfall visitor numbers cannot grow to much more than 50 at a time. It seems urgent to develop what may remain of good forests in the vicinity as alternative sites for birdwatchers and nature lovers that prefer a more private and intimate experience. The author has not had the opportunity of researching whether such sites still exist, but probably other close-by communities could become part of Wli Falls attraction – while at the same time assisting in the conservation of the remaining fragments of forest (see section 3.6).

<u>Kyabobo National Park</u> is of considerable conservation importance, but as discussed in section 2.3 above the tourism potential is perhaps rather limited. The author did not see the Laboum Waterfall area, but it evidently has some potential. Pawa Camp is an exciting location to spend a couple of nights for more intrepid visitors. One promising opportunity is hiking under circumstances where it is almost certain that no other human beings would be met with. The reader is referred to section 2.3 for details.

Fig. 3.6. A close-up of the beauty of Wli Falls.

4. CONCLUDING REMARKS

The forests of the Volta Region, shared by Ghana and Togo, are one of the priority conservation areas in West Africa (Bakarr *et al.* 2001). It has a rich flora and fauna. The complex biogeography of the species shows that the present status is the result of climatic change processes that stretch back over many million years. The close analysis of the butterflies, presented in this report for the first time, indicates that the patterns are more significant than they have been given credit for in the past – though opinions have varied. New techniques, not least increased knowledge about West Africa as a whole and the use of molecular studies, will permit a deepening of our understanding. This will be possible only if the flora and fauna is preserved.

Kalakpa Resource Reserve and Kyabobo National Park are well chosen and adequate to conserve the southern and northern parts of the Volta Region, especially savannah, woodland, and riverine forest. However, the most urgent conservation need is the forests of the central mountains, which are only protected by the tiny Wli Falls Wildlife Sanctuary. That largest of all African butterflies, *Papilio antimachus*, has almost certainly become extinct in the Region during the past 50 years due to the felling of forest in the Amedzofe area. It is very urgent that what remains of semi-deciduous forest in reasonable conditions be somehow tied together into a network of protected areas through collaboration between local communities, forestry, and wildlife. Ecotourism – in its widest sense – will increase in importance. This might provide a glue to combine such conservation efforts.

Fig. 3.6.1. A stunning view to the west from the central mountains of the Volta Region – but note the almost complete denudation of the forests habitats in what used to be well-wooded hills (Jan Decher photo).

REFERENCES

This list of references contains those quoted in the report as well as other published papers dealing specifically with the Volta fauna and its butterflies.

BAKARR, M., BAILEY, B., BYLER, D., HAM, R., OLIVIERI, S., & OMLAND, M. 2001. *From the forest to the sea: biodiversity connection from Guinea to Togo. Priority-setting workshop, December 1999.* Conservation International, Washington DC.

BOOTH, A. H. 1954. The Dahomey Gap and the mammalian fauna of West Africa. *Revue de Zoologie Africaine*, 50:305-314.

BOOTH, A. H. 1958. The Niger, the Volta, and the Dahomey Gap as geographic barriers. *Evolution*, 12:48-62.

BRIGGS, P. 2004. Ghana - the Bradt travel guide. Bradt Travel Guides, UK.

BÜTTNER, R. 1893. Vorwort – die Insecten von Berglandschaft Adeli im Hinterlande von Togo (Westafrika). *Berliner entomologische Zeitschrift*, 38:1-8.

COLLINS, S.C., LARSEN, T.B. & WARREN-GASH, H. 2004 [2003]. Notes on Afrotropical butterflies with the description of eleven new species and four new subspecies. (Lepidoptera, Rhopalocera). *Metamorphosis*, 14:63-110.

DECHER, J. 1997. Conservation, small mammals, and the future of sacred groves in West Africa. *Biodiversity Conservation*, 6: 1007-1026.

DECHER, J., & ABEDI-LARTEY,M. 2002. Small Mammal Zoogeography and Diversity in West African Forest Remnants. Final Report to the Ghana Wildlife Division, the National Geographic Committee for Research and Exploration, and Conservation International. University of Vermont, Burlington, Vermont. 32 pp.

DECHER, J. & BAHIAN, L.K. 1999. Diversity and structure of terrestrial small mammal communities in different vegetation types on the Accra plains of Ghana. *Journal of Zoology, London*, 247: 395-408.

DECHER, F., KILPATRICK, C.W. & BAHIAN, K.L. 2000. Small mammal zoogeography and diversity in West African forest remnants: Progress report to the National Geographic Society committee for research and Exploration and the Ghana Wildlife Division, 21 pp.

DOWSETT-LEMAIRE, F. & DOWSETT, R.J. 2005. Ornithological surveys in the proposed Kyabobo National Park (July-August 2004, February 2005). Wildlife Division & IUCN, Accra.

EMMEL, T.C. & LARSEN, T.B. 1997. Butterfly diversity in Ghana, West Africa. *Tropical Lepidoptera*, 8 (supplement 3):1-13.

GRUBB, P. 1982. Refuges and dispersal in the speciation of African forest mammals. in PRANCE, G.T. 1982. 537-553.

GRUBB, P., JONES, T.S., DAVIES, A.G., EDBERG, E., STARIN, E.D., & HILL, J.E. 2002. *Mammals of Ghana, Sierra Leone and the Gambia*. Tendrine Press, London.

HALL, J.B. & SWAINE, M.D. 1976. Classification and ecology of closed canopy forest in Ghana. *Journal of Ecology*, 64:913-951.

HALL, J.B. & SWAINE, M.D. 1981. Distribution and ecology of vascular plants in a tropical rainforest: Forest vegetation in Ghana. W. Junk, deen Haag.

JOLY, C. 2003. Contribution à l'étude des Charaxinae du Ghana (Lepidoptera: Nymphalidae). *Notes faunistiques de Gembloux*, 50:27-47.

KARSCH, F. 1893. Die Insekten der Berglandschaft Adeli in Hinterlande von Togo (Westafrika). *Berliner entomologische Zeitschrift*, 38:167-266.

KÜHNE, L. 1999. Contribution to the Lepidoptera-Fauna of Ghana – Part 1: Results of the expeditions 1992-1997 (Lepidoptera, Papilionoidea, Hesperioidea). *Esperiana*, 7:399-424.

LARSEN, T.B. 1994. The butterflies of Ghana - their implications for conservation and sustainable use. Report to IUCN and Dept. of Game & Wildlife, Ghana.

LARSEN, T.B. 1995a. Butterfly biodiversity and conservation in the Afrotropical region. *in* PULLIN, A. S. (ed). *Ecology and Conservation of Butterflies*. Chapman & Hall, UK:290-303. (WA 1)

LARSEN, T.B. 1996. *Graphium almansor* (Honrath 1884) in West Africa, and the status of *G. carchedonius* (Karsch 1895). *Lambillionea*, 96:137-140.

LARSEN, T.B. 1996b. Butterflies as indicator species in Africa - Presidential address: Association for Tropical Lepidoptera. *Tropical Lepidoptera News*, 3:1-4.

LARSEN, T.B. 1996c. *Iolaus (Etesiolaus) kyabobo* - a new butterfly from Ghana (Lepidoptera; Lycaenidae). *Lambillionea*, 96:275-277.

LARSEN, T.B. 1997a. An overview of the distribution patterns of Afrotropical rainforest butterflies (Lepidoptera: Rhopalocera). *The inaugural conference on African Lepidoptera*. *Nairobi - Kenya - 1-8 May 1997. Metamorphosis, 3, Occasional Supplement*:183-187.

LARSEN, T.B. 1997b. A revision of the *Hypolycaena lebona* group of African Lycaenidae (Lepidoptera), with description of two new species and one new subspecies. *Metamorphosis* 6:172-182.

LARSEN, T.B. 2001. The butterflies of Ankasa/Nini-Suhien and Bia protected area systems in western Ghana. Protected Areas Development Programme. UGL/Ghana Wildlife Department.

LARSEN, T.B. 2005a. *The butterflies of West Africa*. 2 vols, 596pp, 125 plates. Apollo Books, Svendborg, DK.

LARSEN, T.B. 2005b. Butterflies in McCULLLOUGH, J., DECHER, J. & GUBA-KPELLE, D. (eds.). 2005. A biological assessment of the terrestrial ecosystems of the Draw River, Boi-Tano, Tano Nimiri and Krokosua Hills forest reserves, southwestern Ghana. RAP Bulletin of Biological Assessment 36. Conservation International, Washington, DC.

LARSEN, T.B. 2006. The Ghana butterfly fauna and its contribution to the objectives of the protected areas system. Wildlife Division & IUCN, Accra.

LARSEN, T.B., RILEY, J. & CORNES, M. A. 1980. The butterfly fauna of a secondary bush locality in Nigeria. *Journal of Research in Lepidoptera*, 18:4-23.

PARREN, M.P.E. & DE GRAAF, N.R. 1995. The quest for natural forest management in Ghana, Côte d'Ivoire and Liberia. Tropenbos Series 13, Wageningen, 199 pp.

PIERRE, J, JOLY, C. & BERNAUD, D. 2003. Les *Acraea* du Ghana (Lepidoptera; Nymphalidae). *Lambillionea*, 103:297ff.

RILEY, J. & CORNES, M.A. 1971. The Lepidoptera of Gambari Forest Reserve, Part I. Papilionidae, Pieridae, Danaidae. *Nigerian entomological Magazine*, 2:.

RÖDEL, M.O. & AGYEI, A.C. 2003? Herpetological survey in the Volta region, Eastern Ghana. Department of Animal Ecology and Tropical Biology, University of Würzburg, Germany & Wildlife Division, Accra, Ghana.

ROMPAEY, van R.S.A.R. 1993. Forest gradients in West Africa. A spatial gradient analysis. PhD Thesis, Wageningen, 142 pp.

SCHIØTZ, A. 1967. *Treefrogs (Rhocopharidae) of West Africa*. Spolia Zoologicae, Copenhagen University.

USHER, M. 1979. The *Neptis* butterflies (Nymphalidae) of Ghana. *Systematic Entomology*, 4:197-207.

USHER, M.B. 1984. The *Abantis* species (Lepidoptera: Hesperiidae) of West Africa. *Systematic Entomology*, 9:351-356.

USHER, M.B. 1985. The species of *Henotesia* Butler (Lepidoptera: Nymphalidae, Satyrinae) in western West Africa. *Entomologica Scandinavica*, 16:259-264.

USHER, M.B. 1986. A new species of *Acraea* Fabricius (Lepidoptera: Nymphalidae: Acraeinae). *Systematic Entomology*, 11:111-115.

WEST, B.K. 1992. Farther afield – Togo [butterflies from Kpalimé]. *Entomologists. Record and Journal of Variation*, 104:257-263.

APPENDIX 1

THE BUTTERFLIES OF THE VOLTA REGION, KYABOBO, WLI FALLS, AND KALAKPA (VOL = positively recorded from Volta Region)

Torben B. Larsen February 2006

Numbers: The numbering refers to the book *Butterflies of West Africa – origins, natural history, diversity, conservation –* missing number belong to West African species not found in Ghana.

Legends:

The following three-letter codes are used for the protected areas in Ghana:

KYA = Kyabobo National Park

WLI = Wli Falls Nature Sanctuary

KAL = Kalakpa National Park

VOL = Volta Region in its entirety

CAPITAL letters	imply that the species has been recorded from the locality e.g. KYA
lower case letters	imply that the species is almost certain to occur in the locality e.g. kya
000	implies that the species might occur in the locality ooo
	implies that the species does not occur in the locality —

All species are roughly allocated to one main habitat type. Many butterflies are quite flexible in their requirements and the classification is still a rough guide (**HAB**)

WEF implies that the species is centered on Wet Evergreen Forest

MEF implies that the species is centered on Moist Forests

DRF implies that the species is centered on Drier Semi-deciduous and marginal forests

ALF implies that the species is found in any type of forest

GUI implies that the species is centered on the Guinea Savannah

SUD implies that the species is centered on the Sudan Savannah

SPE implies that the species is found in special habitats

UBQ species that are practically ubiquitous through all habitats in most of Africa

The species are roughly graded by rarity, though this is always a difficult call to make. Very rare species may one day be numerous in a single locality. Very common butterflies are sometimes absent. However, the following notations are used (**RA**):

VC = very common - species that are usually found on any visit to a suitable locality

CO = common - species that are usually found on 75% of visits to most suitable localities

 $\mathbf{NR} =$ not rare – met with frequently but often not common

 $\mathbf{RA} = \text{rare} - \text{species that are found on less than 75\% of visits to most suitable localities}$

 \mathbf{VR} = very rare – species that are usually found on less than 5% of visits to most suitable localities

The last column (CAT) indicates a number of distinct categories of the Ghana butterflies as related to the Volta Region

- en = the species is endemic to the Ghana Subregion (Ghana and eastern Côte d'Ivoire), not extending to Volta Region
- ww = the species is endemic to Africa west of the Dahomey Gap, not extending to Volta Region
- ww+= the species is endemic to Africa west of the Dahomey Gap, extending to Volta Region (only two are limited to the Ghana Subregion)
- veq = the species is found in the Volta Region without crossing the Volta River, the extending east to Nigeria or equatorial Africa
- voe = species that are strictly endemic to the Volta Region
- 2x2 = species known from forests on both sides of the Dahomey Gap, but which do not occur in the Volta Region
- sav = savannah butterflies of Ghana that have not been recorded from the Volta Region
- yes = the species has been found inside the three protected areas (Wli, Kyabobo, Kalakpa)
- no = the species is known from Volta Region but not from the three protected areas
- **NOTE:** Subspecies, where applicable, are given in appendix 1b of the companion report on the butterflies of Ghana as a whole (Larsen 2006) Authors and dates of description are found in Larsen (2005).

LEGI	ENDS	HAB	RA	KYA	WLI	KAL	VOL	CAT
	LIONIDAE							
PAPI							VOI	
1	antimachus	WEF	VR		000		VOL	no
2	zalmoxis	WEF	VR		 	 17. A T		2x2
4	dardanus	ALF	NR	KYA	WLI	KAL	VOL	yes
5	phorcas	ALF	RA	000	WLI		VOL	yes
7	horribilis	WEF	NR					WW
9	chrapkowskoides	MEF	CO	kya	WLI		VOL	yes
10	sosia	ALF	NR	kya	WLI		VOL	yes
11	nireus	ALF	CO	KYA	WLI	KAL	VOL	yes
12	menestheus	WEF	CO	KYA	WLI	KAL	VOL	yes
13	demodocus	UBQ	VC	KYA	WLI	KAL	VOL	yes
15	cyproeofila	MEF	CO	???	???		???	???
16	zenobia	MEF	NR					2x2
17	nobicea	MEF	NR	KYA	WLI		VOL	yes voe
18	cynorta	MEF	NR	KYA	WLI	kal	VOL	yes
GRAI	PHIUM							
20	angolanus	GUI	CO	KYA	WLI	KAL	VOL	yes
22	tynderaeus	WEF	RA					2x2
23	latreillianus	WEF	NR					2x2
24	almansor	DRF	NR	KYA	WLI		VOL	yes
25	adamastor	DRF	NR	KYA	wli	kal	VOL	yes
26	agamedes	DRF	RA	kya	000	000	VOL	no
28	rileyi	WEF	RA					en
29	leonidas	UBQ	СО	KYA	WLI	kal	VOL	yes
30	illyris	WEF	NR					2x2
31	policenes	ALF	CO	KYA	WLI	kal	VOL	yes
32	liponesco	WEF	NR	kya	wli	KAL	VOL	yes
34	antheus	ALF	NR	KYA	WLI	000	VOL	yes
	IDAE							
	DOPONTIINAE							
	DOPONTIA							
35	paradoxa	WEF	NR			—		2x2
	DPSILIA florella		VC	UV A	WLI	VAT	VOI	NOC
36 EURE		UBQ	VC	KYA	W LI	KAL	VOL	yes
eure 38			<u> </u>	KYA	WLI		VOI	NOC
	senegalensis hecabe	MEF	CO			 VAI	VOL VOL	yes
39 40		UBQ		KYA KVA	WLI	KAL		yes
40 41	floricola	UBQ	NR	KYA	WLI	KAL	VOL	yes
41	hapale	SPE	VR		— 10/11	000 V A I		2x2
42	desjardinsii	UBQ	NR	KYA	WLI	KAL	VOL	yes
43	brigitta	GUI	NR	KYA	wli	KAL	VOL	yes
	INAE							
	COPTERYX							
44	eriphia	SUD	NR					sav
	IERONIA							
45	argia	ALF	CO	KYA	WLI	KAL	VOL	yes
46	thalassina	ALF	CO	kya	WLI	KAL	VOL	yes
47	pharis	ALF	CO	KYA	WLI	KAL	VOL	yes

001								
COLO 54								601
54 57	vesta celimene	SUD SUD	NR RA					sav
58	ione	SUD	NR					sav
60	danae	SUD	NR					sav sav
61	aurora	SUD	NR	000	000		000	no
62	antevippe	SUD	NR	000	wli	000	000	no
63	euippe	UBQ	CO	KYA	WLI	KAL	VOL	yes
65	evagore	SUD	co	kya	000	000	vol	no
	ENOIS	000	00	nyu	000	000	VOI	no
68	aurota	SUD	со	kya	WLI	kal	VOL	yes
69	creona	SUD	VC	kya	WLI	kal	VOL	yes
70	gidica	SUD	NR					sav
72	subeida	SUD	NR					sav
73	calypso	ALF	VC	kya	WLI	KAL	VOL	yes
74	theora	MEF	СО	000	WLI	000	VOL	yes
76	hedyle	DRF	NR	KYA	WLI	000	VOL	yes
DIXE	ŻIA							•
78	doxo	SUD	NR					sav
79	orbona	SUD	NR					sav
80	cebron	DRF	NR	kya	wli	kal	VOL	no
81	capricornus	DRF	NR	000	000		VOL	no
APPL	AS							
84	sylvia	ALF	CO	KYA	WLI	KAL	VOL	yes
85	phaola	WEF	NR					2x2
86	sabina	MEF	CO	KYA	WLI		VOL	yes
87	epaphia	UBQ	CO	KYA	WLI	kal	VOL	yes
LEPT								
88	alcesta	ALF	VC	KYA	WLI	KAL	VOL	yes
90	hybrida	ALF	CO	KYA	wli	000	VOL	yes
91	medusa	ALF	CO	000	000	kal	VOL	no
92	marginea	MEF	NR	KYA	WLI	000	VOL	yes
93	wigginsi	ALF	NR	KYA	WLI	KAL	VOL	yes
	OTHRIS			173 7 A		T 7 A T	NOT	
95	chloris	UBQ	VC	KYA	WLI	KAL	VOL	yes
100	dimidiata	WEF	NR		 1.			WW
103	aburi	DRF	NR	KYA	wli		VOL	yes
106	poppea	MEF	NR	KYA	WLI	000	VOL	yes ww+
107	spica	MEF	NR		— 11/1	1.1		en
109	rhodope	ALF	CO	KYA KVA	WLI	kal	VOL	yes
110	jaopura schumanni	ALF	CO	KYA KVA	WLI		VOL	yes
111		MEF	NR	KYA	WLI		VOL	yes
112	atewa	WEF	NR					en
IVC	AENIDAE							
	ETINAE							
	PHYRA							
114	hewitsoni	MEF	RA		wli		VOL	no
115	mirifica	MEF	RA				???	no
116	leucyania	WEF	RA		wli		VOL	no
	AUGA							
117	ernesti	DRF	VR	KYA	wli		VOL	no veq
118	marginalis	MEF	NR	KYA	wli		VOL	yes
121	lamborni	WEF	RA				—	ww
124	imitans	MEF	RA	KYA	wli		VOL	yes veq
	ALOPALPUS							. 1
127	zymna	ALF	СО	KYA	wli		VOL	yes
129	metaleucus	MEF	NR	KYA	wli		VOL	yes
SPAL								-
130	lemolea	DRF	NR	KYA	WLI	kal	VOL	yes
								-

LACE	INOCNEMA							
131	vuattouxi	DRF	NR	kya	wli	kal	VOL	no
133	emperanus	DRF	NR	KYA	wli	KAL	VOL	yes
135	disrupta	MEF	RA				VOL	no
136	reutlingeri	MEF	RA					2x2
137	luna	WEF	RA		wli		VOL	no
139	albimacula	WEF	RA					2x2
LIPT	ENINAE							
PTEL	INA							
141	carnuta	MEF	NR	KYA	WLI		VOL	yes
PENT								
142	pauli	DRF	NR	KYA	WLI	KAL	VOL	yes
144	petreoides	WEF	VR					WW
147	petreia	MEF	CO	KYA	wli		VOL	yes
152	picena	MEF	NR	KYA	WLI	KAL	VOL	yes
155	phidia	MEF	NR	KYA	wli		VOL	yes ww+
157 TEL 1	hewitsonii	MEF	NR		000		VOL	no
TELII 159							VOL	
159 160	acraea	WEF	NR				VOL	no
160	semirufa maesseni	WEF	NR NR	— KYA	WLI		VOL	WW
	IPHOLIDOTOS	WEF	NK	ΓIΑ	WLI		VOL	yes voe
170	nigeriae	WEF	RA					2x2
171	onitshae	WEF	RA				_	$2x^2$ $2x^2$
172	irwini	WEF	RA					$2x^2$ $2x^2$
173	issia	WEF	RA					WW
174	tiassale	WEF	NR					WW
175	nympha	WEF	RA					2x2
TORE	BENIA							
177	wojtusiaki	WEF	RA					2x2
MIM	ACRAEA							
179	neurata	WEF	RA	KYA	WLI		VOL	yes
181	darwinia	WEF	NR					WW
182	maesseni	WEF	NR	kya	WLI		VOL	yes veq
	ERESIA					** * *		
184	libentina	ALF	CO	KYA	WLI	KAL	VOL	yes
185	moyambina	WEF	VR					ww
186	debora	WEF	VR					2x2
187 190	semirufa cellularis	WEF WEF	RA RA		wli		VOL	en
190	issia	WEF	RA		wii		VOL	no ww
	DERESIA							** **
192	eleaza	WEF	NR		wli		VOL	no
	SIOMERA							
193	bicolor	MEF	NR	KYA	WLI		VOL	yes
194	isca	WEF	RA					2x2
195	jacksoni	WEF	VR					en
197	petersi	WEF	RA					en
	INOPHILA							
199	marginalis	MEF	CO	KYA	WLI		VOL	yes
200	similis	MEF	CO	KYA	WLI	KAL	VOL	yes
202	erastus	WEF	NR		—	—		2x2
ERES							10-	
204	maesseni	MEF	RA	1	 1.	000	VOL	no
206	pseudofusca	MEF	RA	kya	wli		VOL	no
210 212	saundersi theodori	MEF	RA				vol VOL	no
	YROCHEILA	MEF	RA	kya	wli	_	VUL	no
213	undifera	WEF	RA					2x2
215	ananvia	v v 🗆 I	1.1.1					202

LIPTI	FNA							
216	submacula	MEF	NR	000	WLI		VOL	yes
217	griveaudi	WEF	VR					en
218	simplicia	MEF	СО	000	wli	kal	VOL	no
222	tiassale	MEF	RA					en
224	albicans	WEF	RA		000		VOL	no
225	alluaudi	WEF	NR	KYA	wli		VOL	yes
226	fatima	???	VR					2x2
227	pearmani	WEF	VR	KYA	wli		VOL	yes veq
229	ferrymani	DRF	RA	000	000	kal	vol	•
231	septistrigata	DRF	NR	000	000	000	VOL	no
232	evanescens	WEF	RA					2x2
234	xanthostola	WEF	RA				VOL	no
236	rochei	DRF	RA		WLI		VOL	yes
237	flavicans	MEF	RA		WLI		VOL	yes
239	seyboui	WEF	VR					en
240	similis	WEF	RA					2x2
242	helena	WEF	NR					WW
243	catalina	WEF	NR					2x2
KAK	UMIA							
246	otlauga	WEF	NR				VOL	no
FALC	CUNA							
249	leonensis	MEF	CO					WW
252	campimus	WEF	NR					2x2
TETR	ARHANIS							
254	symplocus	MEF	CO	KYA	WLI		VOL	yes
255	baralingam	WEF	RA					WW
260	stempfferi	WEF	VR					2x2
LARI	NOPODA							
264	aspidos	MEF	NR	KYA	WLI	KAL	VOL	yes veq
265	-							•
205	eurema	MEF	CO					WW
	ROPENTILA	MEF	CO					WW
		MEF	со					ww no
MICR	ROPENTILA				— 000 000	_	 VOL VOL	
MICR 266	ROPENTILA adelgitha	MEF	со					no
MICR 266 267	ROPENTILA adelgitha adelgunda	MEF MEF	CO VR		000		VOL	no no
MICR 266 267 268	COPENTILA adelgitha adelgunda dorothea	MEF MEF MEF	CO VR NR		000		VOL	no no no
MICR 266 267 268 270 275 IRIDA	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA	MEF MEF MEF WEF	CO VR NR RA		000		VOL VOL —	no no no 2x2
MICR 266 267 268 270 275 IRIDA 278	COPENTILA adelgitha adelgunda dorothea brunnea mamfe	MEF MEF MEF WEF	CO VR NR RA		000		VOL VOL ???	no no no 2x2
MICR 266 267 268 270 275 IRIDA 278 278 279	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana	MEF MEF WEF WEF	CO VR NR RA VR		000		VOL VOL ??? ???	no no no 2x2
MICR 266 267 268 270 275 IRIDA 278 279 280	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta	MEF MEF WEF WEF	CO VR NR RA VR RA		000 000 		VOL VOL — ??? ??? vol	no no no 2x2
MICR 266 267 268 270 275 IRIDA 278 279 280 281	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana	MEF MEF WEF WEF ALF ALF	CO VR NR RA VR RA VR		000		VOL VOL 	no no no 2x2
MICR 266 267 268 270 275 IRID/ 278 279 280 281 282	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala	MEF MEF WEF WEF ALF ALF MEF	CO VR NR RA VR RA VR RA		000 000 		VOL VOL — ??? ??? vol	no no 2x2 en
MICR 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA	MEF MEF WEF WEF ALF ALF ALF ALF	CO VR RA VR RA VR RA RA RA	 000	000 000 wli		VOL VOL 	no no 2x2 en no no veq
MICR 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii	MEF MEF WEF WEF ALF ALF ALF ALF	CO VR RA VR RA VR RA RA RA	 000	000 000 wli		VOL VOL 	no no 2x2 en no no veq 2x2
MICR 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA	MEF MEF WEF WEF ALF ALF ALF MEF	CO VR RA VR RA VR RA RA VR	 000	000 000 wli 000		VOL VOL ??? ??? vol VOL VOL	no no 2x2 en no no veq
MICE 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283 284 284 286	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata	MEF MEF WEF WEF ALF ALF MEF MEF	CO VR NR RA VR RA VR RA VR NR	 000	000 000 wli		VOL VOL 	no no 2x2 en no no veq 2x2
MICE 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283 284 284 286 CERA	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA	MEF MEF WEF ALF ALF ALF MEF WEF MEF	CO VR RA VR RA VR RA VR NR RA	 000 000 000	000 000 wli 000 WLI		VOL VOL ??? ??? vol VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2
MICE 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284 286 CER/ 289	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata	MEF MEF WEF ALF ALF ALF MEF WEF MEF	CO VR RA VR RA VR RA VR NR RA	 000 000	ooo ooo 		VOL VOL ??? ??? vol VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2
MICE 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283 284 283 284 286 CERA 289 291	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia	MEF MEF WEF WEF ALF ALF ALF ALF MEF WEF MEF	CO VR RA VR RA VR RA VR NR RA NR	 000 000 000	000 000 wli 000 WLI		VOL VOL ??? ??? vol VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes
MICE 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283 284 283 284 286 CERA 289 291 EPITO	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF	CO VR NR RA VR RA VR RA VR NR NR NR NR NR	 000 000 000 KYA 000	ooo ooo wli ooo WLI wli wli		VOL VOL ???? ??? VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes
MICE 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283 284 283 284 286 CERA 289 291 EPITO 294	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus	MEF MEF WEF WEF ALF ALF ALF MEF MEF MEF MEF MEF	CO VR NR RA VR RA VR RA VR NR NR NR NR NR	 000 000 KYA 000	ooo ooo 		VOL VOL ??? ??? VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes
MICE 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283 284 283 284 286 CERA 289 291 EPITO 294 295	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF MEF	CO VR NR RA VR RA VR RA VR NR NR NR NR NR NR NR	 000 KYA 000 KYA 000	ooo ooo 		VOL VOL ??? ??? vol VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no
MICE 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284 283 284 286 CER/ 289 291 EPITC 294 295 296	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides urania	MEF MEF WEF WEF ALF ALF ALF MEF MEF MEF MEF MEF	CO VR NR RA VR RA VR RA VR NR NR NR NR NR	 000 000 KYA 000	ooo ooo 		VOL VOL ??? ??? VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes
MICE 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284 283 284 286 CER/ 289 291 EPITC 294 295 296 CEPE	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides urania IETOLA	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF MEF	CO VR RA VR RA VR RA VR NR RA NR NR NR NR RA RA	 000 KYA 000 KYA	ooo ooo wli ooo WLI wli wli wli wli wli wli		VOL VOL ???? ??? VOL VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes no yes
MICE 266 267 268 270 275 IRIDA 278 279 280 281 282 HEW 283 284 283 284 286 CERA 289 291 EPITO 294 295 296 CEPE 297	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides urania IETOLA cephena	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF MEF MEF MEF MEF	CO VR RA VR RA VR RA VR NR RA NR NR NR NR NR NR NR NR NR	 000 KYA 000 KYA 000 KYA kya	ooo ooo wli ooo WLI wli wli wli wli wli wli		VOL VOL ???? ??? VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes no yes no yes
MICE 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284 285 284 286 CER/ 289 291 EPITO 294 295 296 CEPH 297 299	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides urania IETOLA cephena pinodes	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF MEF MEF	CO VR NR RA VR RA VR RA VR NR NR NR NR NR NR NR NR RA RA	 000 KYA 000 KYA	ooo ooo wli ooo WLI wli wli wli wli wli wli		VOL VOL ??? ??? VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes no yes
MICE 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284 286 CER/ 289 291 EPITC 294 295 296 CEPH 297 299 300	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides urania IETOLA cephena pinodes subcoerulea	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF MEF MEF MEF MEF	CO VR RA VR RA VR RA VR NR RA NR NR NR NR NR NR NR NR NR	 000 KYA 000 KYA 000 KYA kya	ooo ooo wli ooo WLI wli wli wli wli wli wli		VOL VOL ???? ??? VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes no yes no yes no no
MICE 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284 286 CER/ 289 291 EPITC 294 295 296 CEPH 297 299 300 302	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides urania IETOLA cephena pinodes subcoerulea mercedes	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF MEF MEF MEF MEF	CO VR NR RA VR RA VR RA VR NR NR NR NR NR NR NR NR RA RA RA RA RA	 000 KYA 000 KYA 000 KYA kya 000	ooo ooo wli ooo WLI wli wli wli wli wli wLI wli wLI ooo		VOL VOL ???? ??? VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes no yes no yes no
MICE 266 267 268 270 275 IRID/ 278 279 280 281 282 HEW 283 284 286 CER/ 289 291 EPITC 294 295 296 CEPH 297 299 300	COPENTILA adelgitha adelgunda dorothea brunnea mamfe ANA incredibilis ghanana exquisuta nigeriana hypocala ITSONIA boisduvalii occidentalis inexpectata AUTOLA crowleyi ceraunia DLA posthumus uranoides urania IETOLA cephena pinodes subcoerulea	MEF MEF WEF ALF ALF ALF MEF MEF MEF MEF MEF MEF MEF MEF MEF	CO VR NR RA VR RA VR RA VR NR RA NR NR NR NR RA RA NR RA RA	 000 KYA 000 KYA 000 KYA kya 000	ooo ooo wli ooo WLI wli wli wli wli wli wLI wli wLI ooo		VOL VOL ??? ??? VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	no no 2x2 en no no veq 2x2 2x2 yes yes no yes no yes no yes no no

305	sublustris	MEF	NR	000	000		VOL	no
306	maesseni	MEF	RA	000	wli		VOL	no voe
307	collinsi	MEF	VR					en
HYPC	PHYTALA							
308	hyettoides	MEF	NR	kya	wli		VOL	no
310	hyettina	MEF	RA	KYA	wli		VOL	yes
311	henleyi	MEF	RA				???	
312	benitensis	WEF	RA	000	000		VOL	no
PHYT	'ALA							
314	elais	WEF	RA	000	000		VOL	no
GERI	TOLA							
315	gerina	WEF	RA	000	000		VOL	no
320	virginea	WEF	RA					2x2
STEM	IPFFERIA							
322	cercene	WEF	RA	000	000		VOL	no
324	moyambina	WEF	NR					
326	dorothea	WEF	NR	000	WLI		VOL	yes ww+
330	leonina	MEF	NR	000	000		VOL	no ww+
334	ciconia	WEF	NR				???	
335	zelza	WEF	NR	000	wli		VOL	no
340	michelae	ALF	NR				???	
342	kholifa	WEF	NR				VOL	no
344	staudingeri	WEF	RA				???	
	IIOPANĂ							
346	honorius	WEF	NR	KYA	wli		VOL	yes
	DLINA							5
347	dispar	MEF	СО	KYA	WLI		VOL	yes
348	melissa	MEF	CO					J = ~
350	catori	WEF	NR	000	WLI		VOL	yes
NEAV								J
352	lamborni	MEF	RA		wli		VOL	no
	CLINAE							
MYRI								
354	silenus	GUI	NR	KYA	wli	kal	VOL	yes
355	subornata	GUI	RA	kya			VOL	no
OXYL		001	101	Ryu			, OL	по
356	faunus	MEF	со	KYI	WLI	KAL	VOL	yes
	DODIGMA		00	IX I I	W L1		VOL	yes
	hymen	MEF	NR	KYA	WLI	kal	VOL	yes
360	demeter	MEF	RA	kya	WLI		VOL	yes
	IAEUS	IVILI		куи	W L1		VOL	yes
361	orcas	MEF	NR	KYA	WLI	000	VOL	yes
362	argyrocyclus	MEF	RA	<u> </u>				2x2
363	asterius	MEF	RA	_				$2x^2$
364	brahami	GUI	RA	kya	wli	kal	VOL	no
365	jefferyi	MEF	VR	куа	w 11	Kai	VOL	2x2
366	charboneli	WEF	VR					$2x^2$ $2x^2$
367	gilloni	MEF	VR		wli		VOL	no
	ARITIS		VIN		wII		VOL	110
368	nilus	SUD	RA					601/
SPINI		500	11/1					sav
369	mozambica	GUI	NR	KYA	wli	kal	VOL	Vec
							VOL	yes
370 371	avriko	GUI	RA	KYA	000	000	VOL	yes
	crustaria	MEF	RA		000	—		no veq
372	iza	MEF	RA		000	—	VOL	no
373 75017	menelas	DRF	VR	000	wli	—	VOL	no
ZERIT				VV A	000	000	VOT	NOC
374	neriene	SUD	NR	KYA	000	000	VOL	yes

AVIO	CEDGEG							
AXIO 375	CERSES	GUI	NR	KYA	wli	KAL	VOL	VAS
373	harpax amanga	SUD	RA	КIА	WII	NAL	VOL	yes sav
	PHNAEUS	300	NA .					sav
378	leonina	MEF	NR		wli		VOL	no
379	aderna	GUI	NR	000	WLI		VOL	yes
	DALETIS	001		000	•• L1		VOL	yes
380	agrippina	MEF	VR		wli		VOL	no
386	subangulata	MEF	VR					en
390	dardanella	MEF	VR					2x2
391	leonis	MEF	RA	000	wli		VOL	no
IOLA	US							
	enus Iolaus							
392	eurisus	ALF	NR	KYA	WLI	kal	VOL	yes
Subge	enus Iolaphilus							5
393	menas	SUD	NR	kya	000	000	VOL	no
395	carolinae	MEF	VR					en
397	iulus	MEF	NR	kya	WLI		VOL	yes
Subge	enus Philiolaus			•				•
398	ismenias	SUD	NR	KYA	wli	kal	VOL	yes
400	alcibiades	MEF	RA		wli		VOL	no
401	parasilanus	MEF	RA		WLI		VOL	yes veq
402	paneperata	MEF	NR		WLI		VOL	yes
403	lukabas	MEF	RA				vol	
404	mane	MEF	RA					WW
405	theodori	MEF	VR		wli	—	VOL	no voe
406	likpe	MEF	VR		wli		VOL	no voe
407	calisto	MEF	NR	KYA	wli		VOL	yes
408	laonides	WEF	RA					2x2
-	enus Tanuetheira							
410	timon	MEF	RA				vol	
-	enus Epamera							
411	alienus	SUD	RA			—		sav
414	scintillans	SUD	NR	kya	000	—	VOL	no
415	laon	MEF	NR	KYA	WLI		VOL	yes
418	banco	WEF	RA					WW
426	sappirus	WEF	RA	000	wli		VOL	no
428	bellina	MEF	NR	KYA	wli		VOL	yes
432	fontainei	WEF	RA	000	wli		VOL	no veq
434	aethria	MEF	RA	KYA	WLI		VOL	yes
435	farquharsoni	MEF	RA	000	wli	 11	VOL	no
436	iasis	ALF	NR	KYA KVA	WLI	kal	VOL	yes
437 ETES	maesa IOLAUS	MEF	RA	KYA	wli		VOL	yes
439	catori	ALF	RA					2x2
440	kyabobo		RA		wli		VOL	
STUC	•	DKF	KA	KIA	WII		VOL	yes
441	marmoreus	SUD	NR			000	VOL	no
	DLYCAENA	50D	INIX			000	VOL	по
443	philippus	GUI	со	KYA	WLI	KAL	VOL	yes
444	kadiskos	MEF	RA	<u> </u>				2x2
445	liara	MEF	RA	000	wli		VOL	no
446	lebona	WEF	NR	KYA	WLI		VOL	yes
447	clenchi	WEF	RA	kya	WLI		VOL	yes ww+
449	scintillans	ALF	CO	KYU	WLI	KAL	VOL	yes
450	dubia	ALF	co	KYA	WLI	KAL	VOL	yes
451	kakumi	MEF	co	kya	WLI		VOL	yes
452	antifaunus	MEF	NR	KYA	WLI		VOL	yes
453	hatita	MEF	CO	KYA	WLI		VOL	yes
455	nigra	WEF	co	kya	WLI		VOL	yes
	J	-	-					5

457	DEUDORIX camerona	MEF	NR	kya	WLI		VOL	Vec
458	diyllus	MEF	NR	куа КҮА	WLI		VOL	yes yes
460	caerulea	GUI	NR	KYA	wli	kal	VOL	yes
461	zela	WEF	RA				???	yes
462	catori	DRF	RA	KYA	wli		VOL	yes
467	otraeda	MEF	NR	kya	wli		VOL	no
468	leonina	MEF	NR	kya	wli		VOL	no
469	virgata	MEF	RA					2x2
473	deritas	MEF	RA	000	000		VOL	no
474	aucta	MEF	RA	KYA	wli		VOL	yes
475	pseudoderitas	MEF	RA	kya	WLI		VOL	yes
476	laticlavia	MEF	RA	000	WLI		VOL	yes
477	aurivilliusi	WEF	RA	000	000		VOL	no ww+
478	kiellandi	WEF	RA	000	000		VOL	no
479	corruscans	WEF	VR					2x2
480	violetta	WEF	RA				VOL	no
481	fumata	WEF	VR					2x2
	DEUDORIX							
484	eleala	ALF	NR	KYA	WLI		VOL	yes
487	moyambina	WEF	VR					2x2
	OMYRINA							
491	mimetica	MEF	RA		wli		VOL	no
492	nomion	DRF	NR	KYA	wli	kal	VOL	yes
	DORIX	2					.01	<i>j</i> c <i>s</i>
494	antalus	GUI	со	KYA	wli	KAL	VOL	yes
495	livia	SUD	VR					sav
496	lorisona	ALF	NR	KYA	WLI	KAL	VOL	yes
497	kayonza	WEF	RA		000		VOL	no
498	dinochares	GUI	RA	KYA	000	000	VOL	yes
499	dinomenes	DRF	RA	000	WLI		VOL	yes
500	odana	ALF	NR	KYA	WLI		VOL	yes
501	galathea	ALF	NR	KYA	wli		VOL	yes
502	caliginosa	MEF	RA	KYA	wli		VOL	yes
CAPY	U							J - ~
506	vorgasi	SPE	VR				VOL	no voe
	U							
POLY	YOMMATINAE							
ANTH								
507	rubricinctus	MEF	CO	KYA	WLI		VOL	yes
508	ligures	MEF	RA	000	WLI		VOL	yes
510	sylvanus	ALF	CO	kya	WLI	KAL	VOL	yes
512	liodes	ALF	NR	KYA	WLI	kal	VOL	yes
513	definita	GUI	NR			000		2x2
514	princeps	GUI	NR	kya	wli	kal	VOL	no
515	starki	GUI	RA	KYA	000	000	VOL	yes
516	amarah	SUD	NR	kya	000	KAL	VOL	yes
517	lunulata	GUI	CO	KYA	wli	kal	VOL	yes
518	kikuyu	GUI	RA	000	000	000	vol	
519	talboti	SUD	VR					
520	wilsoni	GUI	RA	kya	wli		VOL	no
521	levis	ALF	NR	KYA	wli		VOL	yes
522	irumu	ALF	NR	kya	wli	kal	VOL	no
523	larydas	ALF	CO	KYA	WLI	KAL	VOL	yes
524	crawshayi	GUI	NR	KYA	000	KAL	VOL	yes
525	lachares	MEF	NR	000	wli		VOL	no
527	lysicles	WEF	NR		wli		VOL	no
530	atewa	WEF	RA					en
532	radiata	WEF	VR		 \\\/TT			WW
534	locuples	WEF	RA		WLI	—	VOL	yes

537	scintillula	WEF	RA		000		VOL	no
538	helpsi	WEF	VR					en
539	juba	WEF	NR					2x2
NEUR	YPEXINA							
540	lyzanius	MEF	CO	KYA	WLI		VOL	yes
NEUR	RELLIPES							2
542	lusones	WEF	RA		wli		VOL	no
543	chryseostictus	WEF	NR	KYA	wli		VOL	yes
544	fulvus	WEF	VR					2x2
545	staudingeri	WEF	VR					$2x^2$
545 546	-				wli		VOL	
	gemmifera	DRF	RA	ΓIΑ	WII	000	VOL	yes
	LEMA						NOT	
547	rufoplagata	MEF	RA		000		VOL	no
548	lucretilis	MEF	NR	KYA	000		VOL	yes
549	lamias	ALF	NR	kya	WLI	kal	VOL	yes
550	fasciatus	WEF	NR	KYA	WLI		VOL	yes
551	obscura	WEF	RA				VOL	no
552	inconspicua	WEF	RA					2x2
554	hades	MEF	NR	KYA	WLI	kal	VOL	yes
555	phoenicis	DRF	RA	KYA	wli	kal	VOL	yes
556	nigeriae	GUI	NR	KYA	wli	kal	VOL	yes
	DESTHES	001				nui	.01	900
560	jacksoni	WEF	NR					en
561	mimetica						VOL	
		DRF	RA	000	000			no
562	lithas	MEF	NR	000	wli		VOL	no
564	leonina	MEF	NR		wli		VOL	no
564	pungusei	WEF	VR					en
	DONACADUBA							
565	sichela	GUI	CO	KYA	WLI	kal	VOL	yes
LAME	PIDES							
567	boeticus	UBQ	NR	KYA	wli	kal	VOL	yes
URAN	IOTHAUMA							
568	falkensteini	ALF	CO	KYA	WLI	KAL	VOL	yes
PHLY								J C S
574	cyara	ALF	со	KYA	WLI		VOL	yes
	REUS		00	KIA	W L1		VOL	yes
			00	WWA	W/I I	IZ A I	VOI	
575	lingeus	UBQ	CO	KYA	WLI	KAL	VOL	yes
577	audeoudi	WEF	RA	000	wli		VOL	no
LEPT								
578	pirithous	UBQ	CO	KYA	WLI	KAL	VOL	yes
579	babaulti	GUI	NR	KYA	wli	kal	VOL	yes
580	jeanneli	UBQ	CO	KYA	wli	kal	VOL	yes
581	brevidentatus	GUI	NR	kya	wli	kal	vol	no
582	pulchra	SPE	RA	000	000	000	000	no
	INTIUS							
583	cretosus	SUD	со					
584	carana	ALF	CO	KYA	WLI		VOL	yes
TARU			00	KIA	W LI		VOL	yes
586	ungemachi	SUD	NR					sav
588	rosacea	SUD	RA					sav
ACTIZ								
592	lucida	GUI	EA	000	000		VOL	no
	CHRYSOPS							
593	hippocrates	SPE	CO	KYA	WLI	kal	VOL	yes
594	dudgeoni	GUI	NR	KYA	wli	kal	VOL	yes
CUPII	DOPSIS							-
595	jobates	SUD	RA			000	vol	
596	cissus	GUI	NR	kya	WLI	kal	VOL	yes
270		201			., ./1			J 00

	IRYSOPS							
598	albistriata	GUI	NR	kya	wli	KAL	VOL	yes
600	reducta	SUD	NR	KYA	000	000	VOL	yes
601	malathana	UBQ	CO	KYA	WLI	kal	VOL	yes
604	osiris	GUI	CO	KYA	wli	KAL	VOL	yes
605	barkeri	GUI	NR	KYA	wli	kal	VOL	yes
606	sahelianus	SUD	NR			000		sav
	DOCHRYSOPS	002				000		
607	victoriae	GUI	RA	KYA	wli	000	VOL	yes
608	parsimon	GUI	RA	KYA	wli		VOL	yes
611	synchrematiza	GUI	RA	kya	wli	_	VOL	no ww+
615	quassi			•			VOL	
	*	GUI	NR	kya	wli		VOL	no
	MONIPHAS		~~	1737 4	11 77 T	17 4 1	VOI	
617	micylus	MEF	CO	KYA	WLI	KAL	VOL	yes
	RONIA							
622	punctatus	MEF	CO	KYA	WLI	kal	VOL	yes
623	liberiana	WEF	NR					WW
624	pseudopunctatus	MEF	NR	kya	WLI		VOL	yes veq
625	guessfeldti	DRF	NR	KYA	WLI	kal	VOL	yes
626	ornata	ALF	CO	KYA	WLI	KAL	VOL	yes
AZAN	JUS							
627	ubaldus	SUD	RA					sav
628	jesous	SUD	RA	000	000		VOL	no
629	moriqua	SUD	NR	KYA	000		VOL	yes
630	mirza	UBQ	СО	KYA	WLI	KAL	VOL	yes
631	natalensis	GUI	RA	kya	wli	KAL	VOL	yes
632	isis	ALF	CO	KYA	WLI	kal	VOL	yes
CHIL		/ (_1	00	11111		Kui	, or	903
633	eleusis	SUD	RA					sav
634	trochylus	GUI	NR	kya	wli		VOL	
ZIZEI	•	GUI	INIK	куа	WII	000	VOL	no
			~~	VV A	WLI	VAL	VOI	
635	knysna	UBQ	CO	KYA	WLI	KAL	VOL	yes
ZIZIN				1	1.		NOT	
636	antanossa	GUI	NR	kya	wli	kal	VOL	no
ZIZUI								
637	hylax	UBQ	CO	KYA	WLI	KAL	VOL	yes
RIOD	DINIDAE							
ABIS	ARA							
638	intermedia	WEF	VR					2x2
639	tantalus	WEF	VR					2x2
642	gerontes	WEF	RA					2x2
NYM	PHALIDAE							
LIBY	THEINAE							
	THEA							
646	labdaca	ALF	СО	KYA	WLI	000	VOL	ves
	AINAE							J • ~
DANA								
647	chrysippus	UBQ	VC	KYA	WLI	KAL	VOL	yes
	MALA			111/1	,, L1	121 22	, 01	<i>JC</i> ³
648	petiverana	GUI	со	KYA	WLI	kal	VOL	Ves
AMA		901	00	КIА	W LI	каі	, OL	yes
		<u></u>	~~	VV A	<u> </u>	VAI	VOT	Noc
650	niavius	GUI	CO	KYA KYA	WLI	KAL	VOL	yes
651	tartarea	ALF	NR	KYA	WLI	kal	VOL	yes
652	hecate	MEF	NR	KYA	wli	000	VOL	yes
653	damocles	DRF	CO	KYA	WLI	KAL	VOL	yes

SATY	RINAE							
GNO	PHODES							
656	betsimena	ALF	CO	KYA	WLI	kal	VOL	yes
657	chelys	ALF	CO	KYA	WLI	kal	VOL	yes
	ANITIS							
658	leda	UBQ	CO	KYA	WLI	KAL	VOL	yes
659	libya	UBQ	NR	kya	wli	kal	VOL	no
	MNIOPSIS							
661	bammakoo	ALF	CO	KYA	WLI	000	VOL	yes
	CLUS							
663	xeneas	ALF	NR	KYA	WLI		VOL	yes
665	evadne	WEF	NR					2x2
669	ephorus	WEF	RA					2x2
672	italus	WEF	NR	KYA	WLI	KAL	VOL	yes veq
673	zinebi	ALF	NR					WW
674	uniformis	WEF	RA	KYA	wli		VOL	yes
678	procora	WEF	NR	KYA	wli		VOL	yes
679	pavonis	GUI	CO	KYA			VOL	yes
680	milyas	GUI	NR	KYA			VOL	yes
681	trilophus	WEF	RA					2x2
682	ignobilis _.	ALF	RA					2x2
683	maesseni	ALF	NR	KYA	WLI		VOL	yes ww+
684	nobilis	WEF	RA					2x2
687	taenias	MEF	CO	KYA	WLI	 X7.4 X	VOL	yes
690	vulgaris	ALF	VC	KYA	WLI	KAL	VOL	yes
691	dorothea	ALF	VC	KYA	WLI	 17. A I	VOL	yes
692	sandace	ALF	VC	KYA	WLI	KAL	VOL	yes
693	sambulos	WEF	NR					2x2
694	sangmelinae	WEF	NR	KYA KVA	wli WI	 11	VOL	yes
695	mandanes	DRF	NR	KYA KVA	WLI	kal	VOL	yes
696 697	auricruda	MEF	RA	KYA KYA	wli wli		VOL VOL	yes
698	campa	GUI	NR	KYA		000 KAL	VOL	yes
699 699	angulosa sylvicolus	GUI	CO	KYA	ooo wli	KAL	VOL	yes
700	abnormis	WEF WEF	NR NR	KIA	w11		VOL	yes veq
700	safitza		NR	 KYA	WLI	— KAL	VOL	WW
701	funebris	GUI DRF	CO	KYA	WLI	kal	VOL	yes
702	dekeyseri	WEF	RA			Kai	VOL	yes ww
704	istaris	WEF	NR	KYA	WLI		VOL	yes
707	madetes	MEF	NR	KYA	WLI	000	VOL	yes
709	martius	MEF	CO	KYA	WLI	KAL	VOL	yes
	LELESIS		00				101	900
712	halyma	WEF	NR					WW
	DTESIA							
713	elisi	DRF	RA	KYA	000		VOL	yes ww+
	EROPSIS							J ==
714	peitho	WEF	RA					2x2
YPTH								
715	asterope	SUD	RA					sav
716	condamini	GUI	CO	kya	000	000	VOL	no
717	antennata	ALF	NR			kal	_	sav
718	vuattouxi	DRF	NR			kal		WW
719	doleta	ALF	VC	KYA	WLI	KAL	VOL	yes
721	pupillaris	GUI	NR	kya	000	KAL	VOL	yes
722	impura	GUI	RA			000	VOL	no
	HIMOMORPHA							
724	itonia	SPE	NR	KYA	wli	KAL	VOL	yes

CHARAXINAE CHARAXES

CHAI	RAXES							
725	varanes	GUI	CO	KYA	WLI	kal	VOL	yes
726	fulvescens	ALF	NR	KYA	wli	000	VOL	yes
728	candiope	GUI	RA	kya	wli	kal	VOL	no
729	protoclea	ALF	CO	KYA	WLI	KAL	VOL	yes
730	boueti	DRF	NR	kya	wli	kal	VOL	no
731	cynthia	ALF	CO	KYA	wli		VOL	yes
732	lucretius	ALF	CO	KYA	WLI		VOL	yes
733	lactetinctus	GUI	RA	KYA	000	000	VOL	yes
734	epijasius	GUI	CO	KYA	000	kal	VOL	yes
736	castor	DRF	NR	KYA	WLI	000	VOL	yes
737	brutus	MEF	CO	KYA	wli	kal	VOL	yes
738	pollux	MEF	RA			_		2x2
740	eudoxus	ALF	VR			_		2x2
741	tiridates	ALF	CO	KYA	WLI	000	VOL	yes
742	bipunctatus	WEF	NR					2x2
743	numenes	ALF	NR	kya	wli	_	VOL	no
744	smaragdalis	ALF	NR			_		2x2
745	imperialis	ALF	RA	kya	wli	_	VOL	no
746	ameliae	ALF	NR	KYA	wli		VOL	yes
747	pythodoris	DRF	VR					2x2
748	hadrianus	WEF	RA					2x2
750	nobilis	WEF	VR					2x2
752	fournierae	WEF	VR					2x2
753	zingha	MEF	NR	KYA	WLI		VOL	yes
754	etesipe	DRF	NR	KYA	WLI		VOL	yes
755	achaemenes	GUI	CO	KYA	WLI	kal	VOL	yes
756	eupale	ALF	VC	KYA	WLI		VOL	yes
757	subornatus	WEF	RA	KYA	WLI		VOL	yes
758	anticlea	ALF	NR	kya	wli		VOL	no
759	hildebrandti	MEF	RA				VOL	no
760	etheocles	ALF	CO	kya	wli	KAL	VOL	yes
762	petersi	MEF	VR					WW
765	bocqueti	WEF	VR			_		2x2
767	virilis	MEF	NR	kya	wli	kal	VOL	no
768	cedreatis	MEF	NR	kya	WLI	kal	VOL	yes
769	plantroui	DRF	RA	kya	000		???	ww
770	viola	SUD	CO	KYA	000	kal	VOL	yes
771	northcotti	GUI	RA	kya	wli		VOL	no
772	pleione	ALF	CO	kya	WLI		VOL	yes
773	paphianus	WEF	NR	KYA	wli		VOL	yes
774	nichetes	DRF	RA	kya	wli	kal	VOL	no
775	porthos	MEF	RA		wli		VOL	no
776	zelica	WEF	RA	000			VOL	no
777	lycurgus	ALF	CO	KYA	WLI		VOL	yes
778	mycerina	WEF	RA					2x2
779	doubledayi	WEF	RA	KYA	WLI		VOL	yes
EUXA	ANTHE							-
780	eurinome	MEF	NR	KYA	wli		VOL	yes
PALL	.A							•
783	violinitens	MEF	NR	000	wli		VOL	no
784	decius	MEF	NR	000	WLI		VOL	yes
785	ussheri	ALF	СО	000	wli		VOL	no
786	publius	MEF	NR					2x2
APAT	FURINAE							
APAT	TUROPSIS							
786a	cleochares	MEF	RA	000	wli		VOL	no

NYM	PHALINAE							
	LIMOIDES							
787	rumia	ALF	CO	KYA	WLI		VOL	yes
VANI	ESSULA							
788	milca	WEF	RA			—	—	2x2
	ANARTIA							
789	delius	MEF	CO	000	WLI		VOL	yes
VANI								
791	cardui	UBQ	NR	KYA	wli	kal	VOL	yes
PREC				****		** • *		
792	octavia	GUI	NR	KYA	wli	KAL	VOL	yes
793	antilope	GUI	NR	KYA	WLI	kal	VOL	yes
796	ceryne	SPE	NR	KYA	000	 IZ A I	VOL	yes
797 709	pelarga	ALF	NR	KYA	WLI	KAL	VOL	yes
798	sinuata	WEF	RA					2x2
	DLIMNAS		~~	KYA	WLI	1-01	VOI	
801	misippus	UBQ	CO		WLI	kal	VOL	yes
802	anthedon	ALF	CO	KYA		kal	VOL	yes
803 806	dinarcha salmacis	WEF	NR	000 KYA	WLI WLI		VOL VOL	yes
SALA		MEF	CO	ΚIΑ	WLI		VOL	yes
808	cacta	MEF	со	KYA	WLI		VOL	NOS
	OGONIOMORPHA	IVIEF	0	КIА	W LI		VOL	yes
809	cytora	MEF	NR	KYA	WLI		VOL	yes ww+
811	parhassus	MEF	CO	KYA	WLI	 kal	VOL	yes ww+
812	anacardii	DRF	NR	KYA	WLI	KAL	VOL	yes
JUNO		DIVI		K 171	•• L1		VOL	yes
813	orithya	SUD	со	KYA	WLI	000	VOL	yes
814	oenone	UBQ	VC	KYA	WLI	KAL	VOL	yes
815	hierta	SUD	CO	KYA	wli	000	VOL	yes
816	cymodoce	MEF	NR	KYA	WLI		VOL	yes
817	westermanni	DRF	NR	000	000		VOL	no
818	hadrope	DRF	RA	000	000		VOL	no voe
819	sophia	ALF	со	KYA	WLI	kal	VOL	yes
820	stygia	ALF	CO	KYA	WLI	000	VOL	yes
822	chorimene	GUI	СО	KYA	WLI	kal	VOL	yes
823	terea	ALF	VC	KYA	WLI	KAL	VOL	yes
CATA	ACROPTERA							-
824	cloanthe	GUI	NR	KYA	wli	KAL	VOL	yes
CYRI	ESTINAE							
CYRE	ESTIS							
825	camillus	ALF	CO	KYA	WLI		VOL	yes
	IDINAE							
BYBL								
826	anvatara	UBQ	CO	KYA	WLI	KAL	VOL	yes
827	ilithyia	SUD	RA			_		sav
	DXANTHA			T 7 T 7 A			NOT	
828	ethosea	MEF	NR	KYA	WLI		VOL	yes
ARIA				VV A	<u>м</u> лтт	leal	VOT	NOG
829 820	enotrea	ALF	VC	KYA VVA	WLI	kal	VOL	yes
830 NEDI	albifascia DOPSIS	ALF	NR	KYA	WLI	KAL	VOL	yes
NEPII 833	ophione	ALF	со	KYA	WLI		VOL	VAC
	TELA		00	КIА			, OL	yes
834	dryope	DRF	NR	KYA	WLI	KAL	VOL	yes
836	hiarbas	MEF	CO	KYA	WLI	KAL 	VOL	yes
050	marous		00	IX I A	•• L1		, UL	300

CEVE	NTLA							
SEVE 837	occidentalium	ALF	NR	000	000		VOL	n 0
838	boisduvali		NR	000 KYA	ooo wli		VOL	no
839	umbrina		NR	KIA KYA	wli		VOL	yes
039	umorma	DKF	INK	КIА	WII		VOL	yes
LIMI	ENITIDINAE							
HAR								
843	theobene	MEF	CO	KYA	wli		VOL	yes
CYM	OTHOE							-
846	fumana	MEF	CO					2x2
851	egesta	MEF	CO		000		VOL	no
853	lurida	WEF	VR				_	2x2
858	aubergeri	MEF	NR				_	en
859	herminia	MEF	RA					2x2
860	weymeri	WEF	RA					2x2
863	caenis	ALF	CO	KYA	WLI	kal	VOL	yes
866	althea	MEF	NR					2x2
868	jodutta	WEF	CO					2x2
872	coccinata	MEF	NR	KYA	WLI		VOL	yes
873	mabillei	MEF	CO					WW
878	'sangaris'	WEF	NR					2x2
PSEU	DONEPTIS							
879	bugandensis	ALF	CO	KYA	WLI		VOL	yes
PSEU	DACRAEA							
880	eurytus	ALF	CO	KYA	WLI	KAL	VOL	yes
884	boisduvalii	DRF	NR	kya	WLI		VOL	yes
887	lucretia	ALF	CO	KYA	WLI	KAL	VOL	yes
888	warburgi	MEF	NR				_	2x2
889	hostilia	WEF	RA					WW
900	semire	ALF	CO	KYA	WLI	000	VOL	yes
NEPT	TIS							
901	nemetes	ALF	CO	KYA	WLI		VOL	yes
903	metella	ALF	CO	KYA	WLI		VOL	yes
905	serena	DRF	NR	KYA	wli	kal	VOL	yes
906	kiriakoffi	GUI	NR	KYA	wli	kal	VOL	yes
907	morosa	GUI	CO	KYA	WLI	KAL	VOL	yes
908	loma	MEF	RA	000	000		VOL	no
910	angusta	MEF	VR	000	000		VOL	no veq
911	alta	MEF	NR	KYA	WLI		VOL	yes
912	seeldrayersi	MEF	RA	KYA	000	000	VOL	yes
913	puella	MEF	NR	KYA	WLI		VOL	yes
914	conspicua	MEF	RA	000	000		000	
915	najo	MEF	RA	KYA	wli	000	VOL	yes
916	metanira	MEF	RA	000	000		000	
917	continuata	MEF	???	000	000		000	
918	nysiades	MEF	NR	KYA	WLI		VOL	yes
921	nicomedes	MEF	RA	KYA	wli		VOL	yes
922	quintilla	MEF	RA	000	wli		VOL	no
926	paula	WEF	RA					2x2
927	strigata	MEF	RA					2x2
929	nicoteles	MEF	CO	KYA	WLI	KAL	VOL	yes
930	nicobule	MEF	NR					2x2
931	mixophyes	WEF	RA					2x2
933	nebrodes	MEF	NR	KYA	WLI		VOL	yes
934	trigonophora	MEF	NR	KYA	WLI		VOL	yes
936	agouale	ALF	VC	KYA	WLI	kal	VOL	yes
937	melicerta	MEF	CO	KYA	WLI	KAL	VOL	yes
938	troundi	MEF	CO	KYL	wli		VOL	yes

CATU				1737 A	3377 T	17 4 1	VOI	
941	crithea	ALF	VC	KYA	WLI	KAL	VOL	yes
942	niji	WEF	RA					
943	oberthueri	ALF	CO	???	???		VOL	no
944	angustatum	MEF	CO	KYA	WLI	KAL	VOL	yes
	PHURA .							
946	togoensis	MEF	NR			 17.4 1		2x2
948	chalcis	ALF	CO	KYA	WLI	KAL	VOL	yes
	ANUMIDA			T7T 7 A		77 4 7	NOT	
951	daedalus	GUI	CO	KYA	WLI	KAL	VOL	yes
ATER	-			T7T 7 A		77 4 7	NOT	
953	galene	ALF	CO	KYA	WLI	KAL	VOL	yes
	ANDRA			TZ X Z A	XX77 T		VOI	
954	opis	MEF	NR	KYA	WLI		VOL	yes
-	PHENE						NOT	
959	incerta	WEF	RA	000	000		VOL	no
960	barombina	ALF	VC	KYA	WLI	kal	VOL	yes
961	veronica	WEF	CO					ww
964	grosesmithi	MEF	RA					2x2
968	simplex	WEF	NR					WW
974	amicia	MEF	NR	KYA	WLI		VOL	yes
976 070	aridatha	MEF	NR	KYA	wli		VOL	yes
978	coerulea	WEF	CO					2x2
985	ernestibaumanni	WEF	RA	000	wli		VOL	no
986	gambiae	ALF	CO			 17. A 1		2x2
987	ampedusa	ALF	NR	KYA	WLI	KAL	VOL	yes
988	leonis	WEF	VR					WW
989	atossa	MEF	NR		000		VOL	no
990 DEDE	doriclea	MEF	NR					2x2
BEBE			5.4	1737 4	1.		VOI	
994	lucayensis	MEF	RA	KYA	wli		VOL	yes
005	•		~~					•
995 006	tentyris	MEF	СО	KYA	WLI		VOL	yes
996	tentyris osyris	WEF	NR	KYA —	WLI		VOL	ww
996 998	tentyris osyris carshena	WEF MEF	NR NR	KYA — 000	WLI — wli	 	VOL — VOL	ww no
996 998 999	tentyris osyris carshena absolon	WEF MEF ALF	NR NR CO	KYA — 000 KYA	WLI — wli WLI	 	VOL VOL VOL	ww no yes
996 998 999 1001	tentyris osyris carshena absolon zonara	WEF MEF ALF MEF	NR NR CO CO	KYA 000 KYA 000	WLI — Wli WLI WLI		VOL VOL VOL VOL	ww no yes yes
996 998 999 1001 1002	tentyris osyris carshena absolon zonara mandinga	WEF MEF ALF MEF ALF	NR NR CO CO CO	KYA 000 KYA 000 KYA	WLI 		VOL VOL VOL VOL VOL	ww no yes yes yes
996 998 999 1001 1002 1003	tentyris osyris carshena absolon zonara mandinga oxione	WEF MEF ALF MEF ALF MEF	NR NR CO CO CO NR	KYA 000 KYA 000 KYA 000	WLI — Wli WLI WLI WLI WLI		VOL VOL VOL VOL VOL	ww no yes yes yes yes
996 998 999 1001 1002 1003 1004	tentyris osyris carshena absolon zonara mandinga oxione abesa	WEF MEF ALF ALF ALF MEF MEF	NR NR CO CO CO NR NR	KYA 000 KYA 000 KYA	WLI 		VOL VOL VOL VOL VOL	ww no yes yes yes yes no
996 998 999 1001 1002 1003 1004 1006	tentyris osyris carshena absolon zonara mandinga oxione abesa barce	WEF MEF ALF ALF MEF MEF WEF	NR NR CO CO CO NR NR RA	KYA 	WLI — wli WLI WLI WLI WLI ooo —		VOL 	ww no yes yes yes yes no 2x2
996 998 999 1001 1002 1003 1004 1006 1008	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania	WEF MEF ALF ALF MEF MEF WEF ALF	NR NR CO CO NR NR RA CO	KYA 000 KYA 000 KYA 000 000 KYA	WLI 	 	VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes no 2x2 yes
996 998 999 1001 1002 1003 1004 1006 1008 1011	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia	WEF ALF ALF ALF MEF MEF WEF ALF ALF	NR CO CO CO NR NR RA CO CO	KYA 	WLI — wli WLI WLI WLI WLI ooo —		VOL 	ww no yes yes yes no 2x2 yes yes
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola	WEF ALF ALF ALF MEF MEF ALF ALF MEF	NR CO CO CO NR RA CO CO NR	KYA 000 KYA 000 KYA 000 000 KYA KYA KYA	WLI wli WLI WLI WLI WLI WLI WLI WLI 	 KAL 	VOL 	ww no yes yes yes yes yes yes yes 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus	WEF MEF ALF MEF MEF WEF ALF ALF ALF	NR CO CO CO NR RA CO CO NR CO	KYA 000 KYA 000 KYA 000 000 KYA	WLI wli WLI WLI WLI WLI WLI WLI WLI WLI	 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes no 2x2 yes yes 2x2 no
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius	WEF MEF ALF MEF MEF WEF ALF ALF ALF WEF	NR CO CO CO NR RA CO CO NR CO RA	KYA 000 KYA 000 KYA 000 000 KYA KYA KYA	WLI wli WLI WLI WLI WLI WLI WLI WLI 	 KAL 	VOL 	ww no yes yes yes no 2x2 yes yes 2x2 no ww
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia	WEF MEF ALF MEF MEF WEF ALF ALF WEF WEF	NR CO CO CO NR RA CO CO NR CO RA CO	KYA 	WLI wli WLI WLI WLI WLI WLI WLI WLI 	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL 	ww no yes yes yes yes yes 2x2 yes 2x2 no ww 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina	WEF MEF ALF MEF MEF WEF ALF ALF WEF ALF WEF	NR CO CO CO NR NR RA CO CO RA CO CO	KYA 	WLI wli WLI WLI WLI WLI WLI WLI - WLI WLI	 KAL 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes 2x2 no ww 2x2 yes
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra	WEF MEF ALF MEF MEF ALF ALF WEF ALF WEF ALF MEF	NR CO CO CO NR RA CO CO RA CO CO RA	KYA 	WLI wli WLI WLI WLI WLI WLI WLI WLI 	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL 	ww no yes yes yes yes yes 2x2 yes yes 2x2 no ww 2x2 yes no
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta	WEF MEF ALF MEF MEF ALF ALF ALF WEF ALF WEF MEF WEF	NR CO CO CO NR RA CO CO NR CO RA CO CO RA VR	KYA 	WLI wli WLI WLI WLI WLI WLI WLI - WLI WLI	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes 2x2 no ww 2x2 yes no 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina	WEF MEF ALF MEF MEF ALF ALF ALF WEF ALF WEF ALF WEF WEF WEF	NR CO CO CO NR RA CO CO NR CO RA CO CO RA VR RA	KYA 	WLI wli WLI WLI WLI WLI WLI WLI - WLI WLI	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 no ww 2x2 yes no 2x2 yes no 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri	WEF MEF ALF MEF MEF ALF ALF ALF WEF ALF WEF MEF WEF	NR CO CO CO NR RA CO CO NR CO RA CO CO RA VR	KYA 	WLI wli WLI WLI WLI WLI WLI WLI - WLI WLI	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes 2x2 no ww 2x2 yes no 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri VAEDRA	WEF MEF ALF MEF MEF ALF ALF ALF WEF ALF WEF ALF WEF WEF WEF	NR CO CO CO NR RA CO CO NR CO RA CO CO RA VR RA	KYA 	WLI wli WLI WLI WLI WLI WLI WLI - WLI WLI	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 no ww 2x2 yes no 2x2 yes no 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH Subge	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri (AEDRA nus Medoniana	WEF MEF ALF MEF MEF ALF ALF ALF WEF ALF WEF WEF WEF WEF	NR CO CO CO NR RA CO CO RA CO RA CO RA CO RA CO RA CO RA CO RA RA RA	KYA 	WLI wli WLI WLI WLI WLI WLI WLI WLI OOO WLI MLI OOO	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 no ww 2x2 yes no 2x2 yes no 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH Subge 1046	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri (AEDRA nus Medoniana medon	WEF MEF ALF MEF MEF ALF ALF ALF WEF ALF WEF ALF WEF WEF WEF	NR CO CO CO NR RA CO CO NR CO RA CO CO RA VR RA	KYA 	WLI wli WLI WLI WLI WLI WLI WLI - WLI WLI	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 no ww 2x2 yes no 2x2 yes no 2x2
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH Subge 1046 Subge	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri (AEDRA nus Medoniana medon nus Gausapia	WEF MEF ALF MEF MEF ALF ALF WEF ALF WEF WEF WEF	NR CO CO NR NR RA CO CO RA CO CO RA VR RA RA CO	KYA 	WLI wli WLI WLI WLI WLI WLI WLI WLI OOO WLI MLI OOO	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 yes no 2x2 yes no 2x2 yes yes yes
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH Subge 1046 Subge 1047	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri (AEDRA nus Medoniana medon nus Gausapia gausape	WEF MEF ALF MEF MEF WEF ALF WEF WEF WEF WEF WEF WEF WEF	NR CO CO NR NR RA CO CO RA CO CO RA VR RA RA RA CO	KYA 	WLI wli WLI WLI WLI WLI WLI WLI WLI OOO WLI MLI OOO	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 yes no 2x2 yes no 2x2 yes yes yes yes yes yes yes yes yes yes
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH Subge 1046 Subge 1047 1047	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri AEDRA nus Medoniana medon nus Gausapia gausape mariaechristinae	WEF MEF ALF MEF MEF ALF ALF WEF ALF WEF WEF WEF	NR CO CO NR NR RA CO CO RA CO CO RA VR RA RA CO	KYA 	WLI wli WLI WLI WLI WLI WLI WLI WLI OOO WLI MLI OOO	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 yes no 2x2 yes no 2x2 yes yes yes
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH Subge 1046 Subge 1047 1047 Subge	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri AEDRA nus Medoniana medon nus Gausapia gausape mariaechristinae nus Xypetana	WEF MEF ALF MEF ALF MEF ALF WEF ALF WEF WEF WEF WEF WEF	NR CO CO NR NR RA CO CO RA CO CO RA VR RA RA RA RA NR	KYA 	WLI wli WLI WLI WLI WLI WLI OOO WLI OOO WLI OOO WLI OOO	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL 	ww no yes yes yes yes yes 2x2 yes no 2x2 yes no 2x2 yes no 2x2 yes ww en
996 998 999 1001 1002 1003 1004 1006 1008 1011 1012 1014 1017 1021 1027 1029 1033 1035 1037 EUPH Subge 1046 Subge 1047 1047	tentyris osyris carshena absolon zonara mandinga oxione abesa barce mardania cocalia paludicola sophus arcadius laetitia phantasina demetra maledicta ashantina cutteri AEDRA nus Medoniana medon nus Gausapia gausape mariaechristinae	WEF MEF ALF MEF MEF WEF ALF WEF WEF WEF WEF WEF WEF WEF	NR CO CO NR NR RA CO CO RA CO CO RA VR RA RA RA CO	KYA 	WLI wli WLI WLI WLI WLI WLI WLI WLI OOO WLI MLI OOO	 KAL kal 	VOL VOL VOL VOL VOL VOL VOL VOL	ww no yes yes yes yes yes 2x2 yes yes 2x2 yes no 2x2 yes no 2x2 yes yes yes yes ww

1059	diffusa	DRF	NR	KYA	wli	KAL	VOL	yes
1060	crossei	DRF	RA					2x2
1061	crockeri	MEF	NR					ww
Subge	nus Radia							
1062	eusemoides	WEF	VR					WW
	nus Euphaedra		vit					
1064	-	DDE	ND	000	000		VOL	no
	cyparissa	DRF	NR	000	000			no
1065	sarcoptera	MEF	NR	000	000		VOL	no
-	nus Euphaedrana							
1066	themis	DRF	NR	KYA	WLI	KAL	VOL	yes
1067	laboureana	WEF	RA					WW
1071	minuta	WEF	RA					WW
1072	modesta	WEF	NR					WW
1075	janetta	ALF	CO	KYA	WLI	KAL	VOL	yes
1076	splendens	WEF	RA					2x2
1077	aberrans	WEF	VR					ww
1078	vetusta	WEF	VR					WW
1083	ceres	ALF	CO	KYA	WLI	KAL	VOL	yes
1085	phaethusa	ALF	CO	KYA	WLI	KAL	VOL	yes ww+
1085	inanum	MEF	RA	000	000		VOL	-
				000	000			no ww+
1096	ignota	WEF	VR					en
1106	francina	WEF	NR					ww
1108	eleus	WEF	NR					2x2
1112	zampa	WEF	NR					WW
1115	edwardsii	ALF	CO	KYA	WLI		VOL	yes
1116	ruspina	WEF	NR	000	WLI		VOL	yes veq
1117	perseis	WEF	NR					WW
1118	harpalyce	ALF	VC	KYA	WLI	KAL	VOL	yes
1119	eupalus	WEF	RA	000	000		VOL	no ww+
EUPT	•							
1121	crowleyi	ALF	RA	000	000		VOL	no
1122	elabontas	ALF	NR	KYA	WLI		VOL	yes
1122	dorothea	MEF	VR					ww
1123	zowa	ALF	NR	KYA	WLI		VOL	
	DATHYMA	ALF	ININ	KIA	W LI		VOL	yes
					W/I I		VOI	
1133	falcata	MEF	RA	000	WLI		VOL	yes
1134	sibyllina	MEF	RA					2x2
	0.01							
	CONIINAE							
ACRA	AEA							
Subge								
-	nus Actinote							
1139	perenna	MEF	NR	000	WLI		VOL	yes
-		MEF ALF	NR CO	000 KYA	WLI wli		VOL VOL	yes yes
1139	perenna							•
1139 1144	perenna circeis translucida	ALF	СО	KYA	wli		VOL	yes yes
1139 1144 1147 1148	perenna circeis translucida peneleos	ALF MEF ALF	CO NR NR	KYA 000 KYA	wli WLI WLI		VOL VOL VOL	yes yes yes
1139 1144 1147 1148 1149	perenna circeis translucida peneleos parrhasia	ALF MEF ALF MEF	CO NR NR NR	KYA 000 KYA 000	wli WLI WLI WLI		VOL VOL VOL VOL	yes yes yes yes
1139 1144 1147 1148 1149 1150	perenna circeis translucida peneleos parrhasia orina	ALF MEF ALF MEF MEF	CO NR NR NR RA	KYA 000 KYA 000 KYA	wli WLI WLI WLI WLI	 	VOL VOL VOL VOL	yes yes yes yes yes
1139 1144 1147 1148 1149 1150 1152	perenna circeis translucida peneleos parrhasia orina pharsalus	ALF MEF ALF MEF ALF	CO NR NR RA CO	KYA 000 KYA 000 KYA KYA	wli WLI WLI WLI WLI WLI	 kal	VOL VOL VOL VOL VOL	yes yes yes yes yes yes
1139 1144 1147 1148 1149 1150 1152 1153	perenna circeis translucida peneleos parrhasia orina pharsalus encedon	ALF MEF ALF MEF ALF UBQ	CO NR NR RA CO CO	KYA 000 KYA 000 KYA KYA KYA	wli WLI WLI WLI WLI wli	 kal kal	VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes yes
1139 1144 1147 1148 1149 1150 1152 1153 1154	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana	ALF MEF ALF MEF ALF UBQ SPE	CO NR NR RA CO CO NR	KYA 000 KYA 000 KYA KYA KYA kya	wli WLI WLI WLI WLI WLI wli 000	— — kal kal 000	VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes yes no
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope	ALF MEF ALF MEF ALF UBQ SPE ALF	CO NR NR RA CO CO NR VC	KYA 000 KYA 000 KYA KYA KYA kya KYA	wli WLI WLI WLI WLI wli 000 WLI	 kal kal 000 KAL	VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes yes no yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii	ALF MEF MEF MEF ALF UBQ SPE ALF ALF	CO NR NR RA CO CO NR VC NR	KYA 000 KYA 000 KYA KYA KYA kya KYA 000	wli WLI WLI WLI WLI wli ooo WLI ooo	 kal kal 000 KAL 	VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta	ALF ALF MEF ALF ALF UBQ SPE ALF ALF ALF	CO NR NR RA CO CO NR VC NR CO	KYA 000 KYA 000 KYA KYA kya KYA 000 KYA	wli WLI WLI WLI WLI wli ooo WLI ooo WLI	 kal kal 000 KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157 1158	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta lycoa	ALF ALF MEF ALF ALF UBQ SPE ALF ALF ALF	CO NR NR RA CO CO NR VC NR CO CO	KYA 000 KYA KYA KYA KYA kya KYA 000 KYA KYA	wli WLI WLI WLI WLI wli ooo WLI WLI WLI	 kal kal ooo KAL KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157 1158 1159	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta	ALF ALF MEF ALF UBQ SPE ALF ALF ALF ALF UBQ	CO NR NR RA CO CO NR VC NR CO CO CO	KYA 000 KYA KYA KYA KYA KYA KYA KYA	wli WLI WLI WLI WLI wli ooo WLI WLI WLI WLI	 kal kal ooo KAL KAL KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes yes yes yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157 1158 1159 1160	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta lycoa	ALF ALF MEF ALF ALF UBQ SPE ALF ALF ALF	CO NR NR RA CO CO NR VC NR CO CO	KYA 000 KYA KYA KYA KYA KYA 000 KYA KYA	wli WLI WLI WLI WLI wli ooo WLI WLI WLI	 kal kal ooo KAL KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157 1158 1159	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta lycoa serena	ALF ALF MEF ALF UBQ SPE ALF ALF ALF ALF UBQ	CO NR NR RA CO CO NR VC NR CO CO CO	KYA 000 KYA KYA KYA KYA KYA KYA KYA	wli WLI WLI WLI WLI wli ooo WLI WLI WLI WLI	 kal kal ooo KAL KAL KAL KAL KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes yes yes yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157 1158 1159 1160	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta lycoa serena acerata	ALF MEF MEF ALF UBQ SPE ALF ALF ALF UBQ ALF	CO NR NR RA CO CO NR VC NR CO CO CO NR	KYA 000 KYA KYA KYA KYA KYA KYA KYA	wli WLI WLI WLI WLI wli ooo WLI WLI WLI wli	 kal kal ooo KAL KAL KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes yes yes yes yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta lycoa serena acerata pseudepaea	ALF MEF ALF MEF ALF UBQ SPE ALF ALF ALF UBQ ALF WEF	CO NR NR RA CO CO NR VC NR CO CO CO NR RA	KYA ooo KYA KYA KYA KYA KYA KYA KYA KYA KYA	wli WLI WLI WLI WLI WLI WLI WLI WLI WLI WLI	 kal kal ooo KAL KAL KAL KAL KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes yes yes yes yes yes yes yes
1139 1144 1147 1148 1149 1150 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1165	perenna circeis translucida peneleos parrhasia orina pharsalus encedon encedana alciope aurivillii jodutta lycoa serena acerata pseudepaea bonasia	ALF MEF ALF MEF ALF UBQ ALF ALF ALF UBQ ALF WEF ALF	CO NR NR RA CO CO NR VC NR CO CO CO NR RA CO	KYA ooo KYA KYA KYA KYA KYA KYA KYA KYA	wli WLI WLI WLI WLI wli ooo WLI WLI WLI wli WLI	 kal kal ooo KAL KAL KAL KAL KAL KAL KAL KAL	VOL VOL VOL VOL VOL VOL VOL VOL VOL VOL	yes yes yes yes yes yes no yes no yes yes yes yes yes yes yes yes

1169	vesperalis	WEF	VR					2x2
Subge	nus Acraea							
1172	kraka	WEF	RA			—		2x2
1173	rogersi	WEF	NR	000	WLI		VOL	yes
1174	abdera	MEF	RA	000	WLI		VOL	yes
1176	egina	ALF	CO	kya	WLI	KAL	VOL	yes
1178	pseudegina	UBQ	CO	KYA	WLI	KAL	VOL	yes
1179	caecilia	SUD	CO	KYA	wli	kal	VOL	yes
1180	zetes	DRF	NR	KYA	WLI	kal	VOL	yes
1181	endoscota	ALF	RA	KYA	WLI		VOL	yes
1182	leucographa	MEF	NR					2x2
1184	quirina	ALF	CO	KYA	WLI	kal	VOL	yes
1185	neobule	UBQ	CO	KYA	WLI	KAL	VOL	yes
1186	eugenia	DRF	NR	KYA	WLI		VOL	yes veq
1187	camaena	DRF	RA					2x2
1188	vestalis	ALF	NR	KYA	WLI		VOL	yes
1189	macaria	WEF	RA					WW
1190	umbra	MEF	NR	kya	WLI	KAL	VOL	yes
1191	alcinoe	MEF	CO	KYA	WLI		VOL	yes
1192	consanguinea	WEF	RA					2x2
1196	epaea	ALF	CO	KYA	WLI	KAL	VOL	yes
LACH	INOPTERA							
1199	anticlia	MEF	CO	kya	WLI		VOL	yes
PHAL	ANTA							
1200	phalantha	UBQ	CO	KYA	WLI	KAL	VOL	yes
1201	eurytis	MEF	CO	KYA	WLI		VOL	yes
HESP	PERIIDAE							
COLI	ADINAE							
COEL	IADES							
1000								
1203	chalybe	ALF	CO	KYA	WLI		VOL	yes
1203 1204	chalybe bixana	ALF MEF	CO RA	KYA	WLI 000		VOL VOL	yes no
								-
1204 1206	bixana	MEF	RA	KYA — kya KYA	000		VOL VOL	no no
1204	bixana libeon forestan	MEF ALF	RA NR	— kya	ooo wli	_	VOL	no no yes
1204 1206 1207	bixana libeon	MEF ALF UBQ	RA NR CO	— kya KYA	ooo wli WLI	— KAL	VOL VOL VOL	no no yes yes
1204 1206 1207 1208 1209	bixana libeon forestan pisistratus	MEF ALF UBQ ALF	RA NR CO CO	— kya KYA KYA	ooo wli WLI WLI	— KAL	VOL VOL VOL VOL	no no yes
1204 1206 1207 1208 1209 PYRR	bixana libeon forestan pisistratus hanno HIADES	MEF ALF UBQ ALF	RA NR CO CO	— kya KYA KYA	ooo wli WLI WLI	— KAL	VOL VOL VOL VOL	no no yes yes
1204 1206 1207 1208 1209 PYRR 1210	bixana libeon forestan pisistratus hanno HIADES lucagus	MEF ALF UBQ ALF MEF	RA NR CO CO NR	— kya KYA KYA	ooo wli WLI WLI	— KAL	VOL VOL VOL VOL	no no yes yes yes
1204 1206 1207 1208 1209 PYRR 1210 PYRR	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA	MEF ALF UBQ ALF MEF	RA NR CO CO NR	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en
1204 1206 1207 1208 1209 PYRR 1210	bixana libeon forestan pisistratus hanno HIADES lucagus	MEF ALF UBQ ALF MEF DRF	RA NR CO CO NR CO	— kya KYA KYA	ooo wli WLI WLI	— KAL	VOL VOL VOL VOL	no no yes yes yes
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA	MEF ALF UBQ ALF MEF DRF	RA NR CO CO NR CO	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis	MEF ALF UBQ ALF MEF DRF	RA NR CO CO NR CO	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis	MEF ALF UBQ ALF MEF DRF	RA NR CO CO NR CO	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS	MEF ALF UBQ ALF MEF DRF ALF	RA NR CO CO NR CO	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en yes
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta	MEF ALF UBQ ALF MEF DRF ALF WEF WEF	RA NR CO CO NR CO CO	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en yes 2x2
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi	MEF ALF UBQ ALF MEF DRF ALF	RA NR CO CO NR CO CO VR VR VR	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en yes 2x2 2x2
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS	MEF ALF UBQ ALF MEF DRF ALF WEF WEF	RA NR CO CO NR CO CO VR VR VR	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en yes 2x2 2x2
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii	MEF ALF UBQ ALF DRF ALF WEF WEF WEF	RA NR CO CO NR CO CO VR VR VR RA	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en yes 2x2 2x2 2x2 2x2
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS	MEF ALF UBQ ALF DRF ALF WEF WEF WEF	RA NR CO CO NR CO CO VR VR VR RA	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL	no no yes yes yes en yes 2x2 2x2 2x2 2x2
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS rutilans	MEF ALF UBQ ALF MEF DRF ALF WEF WEF WEF	RA NR CO CO NR CO CO VR VR VR RA RA	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL VOL 	no no yes yes en yes 2x2 2x2 2x2 2x2 2x2
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA 1216	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS	MEF ALF UBQ ALF MEF DRF ALF WEF WEF WEF WEF	RA NR CO CO NR CO CO VR VR VR RA RA RA	— KYA KYA KYA —	ooo wli WLI WLI WLI	— KAL kal —	VOL VOL VOL VOL VOL	no no yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 no
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA 1216 1217	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS rutilans sagamase	MEF ALF UBQ ALF MEF DRF ALF WEF WEF WEF WEF	RA NR CO CO NR CO CO VR VR RA RA RA VR	— KYA KYA KYA —	ooo wli WLI WLI WLI wli	 KAL kal KAL	VOL VOL VOL VOL VOL	no no yes yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 2x2 no en
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA 1216 1217 1219	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi EUS johnstonii ENORRHINUS rutilans sagamase leona ankasa	MEF ALF UBQ ALF MEF ALF WEF WEF WEF WEF WEF WEF WEF WEF	RA NR CO CO NR CO CO VR VR VR RA RA RA VR RA	— KYA KYA KYA —	ooo wli WLI WLI WLI wli	 KAL kal KAL	VOL VOL VOL VOL VOL VOL 	no no yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 2x2 no en ww en
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA 1216 1217 1219 1223 1224	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS rutilans sagamase leona ankasa galenus	MEF ALF UBQ ALF MEF DRF ALF WEF WEF WEF WEF WEF WEF WEF WEF WEF WE	RA NR CO CO NR CO CO VR VR VR RA RA RA VR RA VR RA VR	<pre> kya KYA KYA kya kya</pre>	ooo wli WLI WLI WLI wli	 KAL kal KAL KAL 	VOL VOL VOL VOL VOL	no no yes yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 2x2 no en ww
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA 1216 1217 1219 1223	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS rutilans sagamase leona ankasa galenus cf galenus	MEF ALF UBQ ALF DRF ALF WEF WEF WEF WEF WEF WEF WEF WEF ALF WEF	RA NR CO CO NR CO CO VR VR VR RA RA VR RA VR RA VR CO	<pre> kya KYA KYA kya kya</pre>	ooo wli WLI WLI WLI wli	 KAL kal KAL KAL 	VOL VOL VOL VOL VOL	no no yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 2x2 no en ww en yes
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA 1216 1217 1219 1223 1224 1225 1226	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS rutilans sagamase leona ankasa galenus cf galenus meditrina	MEF ALF UBQ ALF DRF ALF WEF WEF WEF WEF WEF WEF WEF WEF WEF WE	RA NR CO CO NR CO CO VR VR VR RA RA VR RA VR RA VR CO RA	<pre> kya KYA KYA kya kya</pre>	ooo wli WLI WLI WLI wli	 KAL kal KAL KAL 	VOL VOL VOL VOL VOL	no no yes yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 no en ww en yes 2x2 2x2 2x2
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATF 1215 CELA 1216 1217 1219 1223 1224 1225 1226 1227	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS rutilans sagamase leona ankasa galenus cf galenus meditrina ovalis	MEF ALF UBQ ALF DRF ALF WEF WEF WEF WEF WEF WEF WEF WEF WEF WE	RA NR CO CO NR CO CO VR VR RA RA RA VR RA VR RA VR CO RA RA RA RA RA	kya KYA KYA KYA 	ooo wli WLI WLI wli 	 KAL kal KAL KAL 	VOL VOL VOL VOL VOL VOL VOL VOL 	no no yes yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x
1204 1206 1207 1208 1209 PYRR 1210 PYRR 1211 PYRC LOXC 1212 1213 1214 KATR 1215 CELA 1216 1217 1219 1223 1224 1225 1226	bixana libeon forestan pisistratus hanno HIADES lucagus HOCHALCIA iphis SINAE DLEXIS holocausta dimidia hollandi REUS johnstonii ENORRHINUS rutilans sagamase leona ankasa galenus cf galenus meditrina	MEF ALF UBQ ALF DRF ALF WEF WEF WEF WEF WEF WEF WEF WEF WEF WE	RA NR CO CO NR CO CO VR VR RA RA RA VR RA VR RA VR RA VR RA VR RA VR RA VR RA	<pre> kya KYA KYA kya kya</pre>	ooo wli WLI WLI WLI wli	 KAL kal KAL KAL KAL KAL 	VOL VOL VOL VOL VOL VOL VOL VOL 	no no yes yes yes en yes 2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2 no en ww en yes 2x2 2x2 2x2

TAGIADES 1232 flesus		<u> </u>	KYA	WLI	KAL	VOI	NOG
1232 flesus EAGRIS	ALF	CO	KIA	WLI	KAL	VOL	yes
1233 denuba	ALF	со	KYA	WLI	kal	VOL	yes
1234 decastigma	WEF	RA	K 1 A		Kai		2x2
1235 tigris	WEF	RA	KYA	WLI		VOL	yes
1236 subalbida	WEF	RA					2x2
1237 hereus	MEF	NR	000	wli	_	VOL	no
1238 tetrastigma	MEF	NR	kya	WLI		VOL	yes
CALLEAGRIS			•				•
1239 lacteus	WEF	NR			_		2x2
PROCAMPTA							
1241 rara	MEF	NR	KYA	wli		VOL	yes
ERETIS							
1242 lugens	GUI	CO	KYA	wli	000	VOL	yes
1243 plistonicus	ALF	NR	KYA	WLI	kal	VOL	yes
1244 melania	DRF	NR	KYA	WLI	KAL	VOL	yes
SARANGESA	<u></u>		1737 4		1.1	VOI	
1245 laelius	GUI	NR	KYA	—	shh	VOL	yes
1246 phidyle 1247 tertullianus	SUD	NR	1				
	MEF	NR	kya KYA	WLI WLI		VOL VOL	yes
1248 majorella 1249 tricerata	MEF MEF	NR NR	KIA KYA	wli		VOL	yes
1249 theela	ALF	CO	KYA	WLI	KAL	VOL	yes yes
1250 dilecta 1251 bouvieri	DRF	co	KYA	WLI	kal	VOL	yes
1252 brigida	MEF	NR	KYA	WLI		VOL	yes
CAPRONA						.01	J 08
1253 adelica	GUI	RA	KYA	000	kal	VOL	yes
1254 pillaana	SUD	VR					5
NETROBALANE							
1255 canopus	GUI	RA	000			VOL	no
ABANTIS							
1256 bismarcki	GUI	RA	KYA	000	000	VOL	yes
1257 leucogaster	WEF	RA		000		VOL	no
1258 nigeriana	GUI	NR	KYA	000	kal	VOL	yes
1259 pseudonigeriana	SUD	RA	KYA	000	kal	VOL	yes
1261 lucretia	MEF	RA	KYA	WLI		VOL	yes
1262 elegantula	DRF	RA	KYA	000		VOL	yes
1263 ja	WEF	VR					2x2
1263 tanobia	WEF	VR			_		en
SPIALIA 1265 spio		<u> </u>	KYA	WLI	kol	VOL	NOC
1265 spio 1267 diomus	SUD SUD	CO NR	K I A KYA	wli	kal kal	VOL	yes
1267 dromus	GUI	NR	KYA	wli	kal	VOL	yes yes
1269 ploetzi	ALF	NR	KYA	WLI	KAL	VOL	yes
GOMALIA	7.021		11111		IC IL	VOL	yes
1270 elma	DRF	NR	KYA	WLI	kal	VOL	yes
12/0 01110	2						JC 3
HESPERIIDAE							
ASTICTOPTERUS							
1276 anomoeus	WEF	NR			_	VOL	no ww+
1277 abjecta	GUI	СО	KYA	WLI	KAL	VOL	yes
PROSOPALPUS							
1278 debilis	MEF	RA	000	000	KAL	VOL	yes
1279 styla	DRF	NR	000	WLI		VOL	yes
1280 saga	WEF	RA					2x2
KEDESTES							
1000							
1282 protensa	GUI	VR	_	_	_		sav

COPC								
GORC 1284	aretina	ALF	NR	KYA	wli		VOL	VAS
1284	heterochrus	MEF	NR	000	wli		VOL	yes no
1285	mocquerysii	ALF	NR	KYA	wli	KAL	VOL	yes
1287	aburae	WEF	RA		wli	<u> </u>	VOL	no
1289	bina	MEF	NR		wli		VOL	no
1290	sola	MEF	RA					2x2
1291	afikpo	MEF	VR		wli		VOL	no
1292	diversata	MEF	NR	000	wli	KAL	VOL	yes
1293	bule	MEF	RA	000	wli		VOL	no
1294	minima	DRF	NR	KYA	wli	kal	VOL	yes
1295	sara	ALF	NR	KYA	WLI		VOL	yes
1296	subfacatus	ALF	NR	KYA	wli	KAL	VOL	yes
1297	pali	MEF	RA	000	wli		VOL	•
GYRC) GRA							
1299	subnotata	ALF	NR	KYA	WLI	KAL	VOL	yes
CERA	TRICHIA							•
1301	phocion	MEF	CO			_		2x2
1302	semilutea	MEF	RA		wli	_	VOL	no
1303	clara	WEF	NR					2x2
1305	crowleyi	WEF	RA					WW
1306	nothus	WEF	NR	KYA	WLI		VOL	yes
1307	argyrosticta	WEF	NR		wli	_	VOL	no
1308	maesseni	WEF	RA			—		en
	ORHINUS							
1309	watsoni	MEF	RA			—		2x2
1310	ignita	MEF	NR					2x2
	ALEODES							
1311	incerta	GUI	CO	KYA	wli	KAL	VOL	yes
1312	edipus	ALF	VC	KYA	WLI	kal	VOL	yes
1313	sator	MEF	NR	KYA	WLI	000	VOL	yes
1314	tibullus	MEF	NR	KYA	wli		VOL	yes
1315	xanthopeplus	WEF	VR					2x2
	THODISCA			*** * *				
1317	rega	ALF	NR	KYA	wli		VOL	yes
1318	astrape	MEF	NR	KYA	WLI		VOL	yes
	SMODES			17374			VOI	
1320	morantii	SUD	RA	KYA			VOL	yes
1321 DUAD	lentiginosa	ALF	RA	KYA	WLI	kal	VOL	yes
	BDOMANTIS			UX A	1:		VOI	
1322	galatia	MEF	NR	KYA KVA	wli WI I		VOL	yes
1323 OSM0	sosia	MEF	NR	KYA	WLI		VOL	yes
1324			<u> </u>	KYA	WLI		VOL	Noc
1324	laronia omar	ALF DRF	CO NR	KYA	WLI	KAL	VOL	yes
1325	lux	WEF	NR	KYA	wli	KAL 	VOL	yes yes
1320	thora	ALF	CO	KYA	WLI	 kal	VOL	yes
1328	distincta	WEF	RA		W LI	Kai		2x2
1329	adon	WEF	RA		WLI		VOL	yes
1332	adosus	WEF	RA					2x2
1332	lindseyi	MEF	NR	 KYA	WLI		VOL	yes
1334	costatus	WEF	RA				. OL	2x2
1335	banghaasi	WEF	RA					2x2 2x2
	ANTES							
1336	ogowena	WEF	VR					2x2
	CLEROS							
1337	placidus	MEF	NR	kya	WLI	kal	VOL	yes ww+
1338	biguttulus	ALF	CO	KYA	WLI	kal	VOL	yes
1339	substrigata	MEF	RA	KYA	wli		VOL	yes
1340	maesseni	MEF	NR	kya	wli		VOL	no
				5				

ACLE			~~~	VVA	W/L I	Irol	VOI	
1341 1342	ploetzi mackenii	ALF	CO CO	KYA KYA	WLI WLI	kal KAL	VOL VOL	yes
1342	nigrapex				wli	KAL	VOL	yes
1345	bala	MEF MEF	NR RA	000	wli		VOL	no no ww
SEMA			KA		WII		VOL	no ww+
1345	pulvina	ALF	со	KYA	WLI	kal	VOL	VAC
1345	sextilis	WEF	NR	K 1 A	wli	каі 	VOL	yes no
1340	atrio	WEF	RA		w 11	_		2x2
1349	arela	DRF	NR	KYA	wli	kal	VOL	yes
	DLEUCIS	DI		11111	VV 11	Kui	VOL	yes
1350	ophiusa	ALF	со	KYA	WLI	kal	VOL	yes
1351	tripunctata	MEF	NR	KYA	WLI		VOL	yes
1352	sophia	WEF	RA					2x2
MEZA	-		101					2112
1353	indusiata	MEF	NR	KYA	wli	000	VOL	yes
1354	meza	ALF	VC	KYA	WLI	KAL	VOL	yes
1355	mabea	MEF	VR					2x2
1356	leucophaea	MEF	NR	kya	wli		VOL	no
1357	elba	MEF	RA	kya	wli		VOL	no
1358	mabillei	WEF	RA					2x2
1359	cybeutes	ALF	NR	KYA	wli		VOL	yes
	NYMUS			1111	VV 11		VOL	yes
1361	xanthias	WEF	RA					2x2
1363	ligora	MEF	NR	000	WLI	000	VOL	yes
1364	nevea	WEF	VR					2x2
	RONYMUS							
1365	neander	ALF	NR	KYA	wli	kal	VOL	yes
1367	caesar	ALF	CO	KYA	wli	KAL	VOL	yes
1368	hero	MEF	NR	KYA	WLI		VOL	yes
1369	helles	MEF	NR	kya	wli		VOL	no
1370	evander	MEF	NR	КYА	WLI		VOL	yes
	OPETES							5
1373	ganda	DRF	RA		000		VOL	no
1374	cerymica	ALF	NR	KYA	wli	kal	VOL	yes
1376	quaternata	DRF	RA				000	•
GAM	[A]							
1377	buchholzi	WEF	NR	KYA	WLI		VOL	yes
1378	shelleyi	WEF	NR	kya	WLI		VOL	yes
ARTI	TROPA							
1379	comus	MEF	NR	KYA	wli		VOL	yes
MOPA	ALA							
1380	orma	MEF	RA	KYA	wli		VOL	yes
GRET								
1381	waga	ALF	CO	KYA	WLI	kal	VOL	yes
1383	cylinda	ALF	NR	KYA	wli		VOL	yes
1386	balenge	MEF	RA	000	000	—	VOL	no
	OTEINON					** • *		
1387	laufella	ALF	CO	KYA	WLI	KAL	VOL	yes
1388	iricolor	WEF	RA					2x2
1389	laterculus	WEF	RA					2x2
1390	capronnieri	WEF	VR					2x2
1391	caenira	ALF	CO	KYA	WLI		VOL	yes
1392	ceucaenira	WEF	RA	000	WLI		VOL	yes
1393	concaenira	WEF	RA					2x2
1394 LEON	pruna	WEF	RA	000	000	—	VOL	no
LEON								22
1395	binoevatus	WEF	RA					2x2
1397	lota	WEF	VR					2x2
1399	leonora	WEF	RA	KYA	wli		VOL	yes

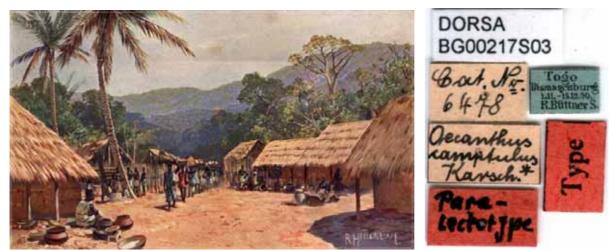
1401	stoehri	WEF	RA	KYA	000		VOL	yes
1402	meloui	WEF	RA					2x2
1403	halma	WEF	???					2x2
1405	luehderi	WEF	RA					2x2
CAEN								
1406	soritia	WEF	RA	KYA	WLI		VOL	yes
1407	kangvensis	MEF	NR	KYA	WLI		VOL	yes
1408	xychus	MEF	RA				VOL	no
1409	benga	WEF	RA					2x2
1410	otilia	WEF	RA					$2x^2$ $2x^2$
1411	dacenilla	MEF	RA					2x2
1412	dacela	ALF	CO	KYA	WLI	kal	VOL	yes
1413	hidarioides	WEF	RA					2x2
1414	dacena	MEF	CO	KYA	WLI		VOL	yes
MONZ	ZA							
1415	alberti	ALF	VC	kya	WLI		VOL	yes
1416	cretacea	ALF	CO	KYA	WLI	KAL	VOL	yes
	PHINA		00	KIA	W L1	MAL	VOL	yes
				T7T 7 A			NOT	
1417	noctula	WEF	RA	KYA	wli		VOL	yes
1419	unistriga	WEF	NR	KYA	WLI		VOL	yes
1420	tarace	MEF	RA	000	000		VOL	no
1421	flavina	MEF	RA	KYA	wli		VOL	yes
1422	statirides	MEF	NR	kya	wli		VOL	no
1423	statira	WEF	RA					2x2
	malthina							
1425		WEF	RA					2x2
1426	maximiliani	MEF	RA					WW
FRES	NA							
1427	netopha	DRF	NR	KYA	WLI	kal	VOL	yes
1428	maesseni	MEF	RA	kya	wli		VOL	no
1429	nyassae	DRF	RA	kya	wli	kal	VOL	no
1430	cojo	ALF	NR	KYA	wli		VOL	yes
1431	carlo	MEF	VR	<u> </u>				2x2
			۷K					ZXZ
	YLESCHES							
1432	galesa	ALF	NR	kya	wli	kal	VOL	no
1434	moritili	GUI	NR	KYA	wli	kal	VOL	yes
1435	rossi	DRF	VR	000	wli		VOL	no ww+
1437	picanini	ALF	NR	kya	wil	kal	VOL	no
1438	lamba	MEF	RA					2x2
	affinissima	GUI	NR			000	vol	
1440	chamaeleon			000	000			20
		GUI	NR	000	000	000	VOL	no
1441	batangae	GUI	RA				vol	
	PIDAS							
1444	mathias	UBQ	CO	KYA	wli	kal	VOL	yes
1445	thrax	UBQ	CO	KYA	wli	kal	VOL	yes
BORE	80							
1446	fallax	GUI	NR	KYA	wli	kal	VOL	yes
1447								
1448	fanta	GUI	NR	kva		kal	VOL	Ves
	fanta parabscura	GUI	NR	kya KVA	WLI	kal KAI	VOL VOL	yes
	perobscura	GUI	NR	KYA	WLI WLI	KAL	VOL	yes
1449	perobscura micans	GUI SPE	NR RA	KYA 000	WLI WLI WLI	KAL kal	VOL VOL	yes yes
1449 1450	perobscura micans borbonica	GUI SPE GUI	NR RA NR	KYA 000 KYA	WLI WLI WLI wli	KAL kal 000	VOL VOL VOL	yes yes yes
1449 1450 1451	perobscura micans borbonica gemella	GUI SPE	NR RA	KYA 000	WLI WLI WLI	KAL kal	VOL VOL	yes yes
1449 1450	perobscura micans borbonica	GUI SPE GUI	NR RA NR	KYA 000 KYA	WLI WLI WLI wli	KAL kal 000	VOL VOL VOL	yes yes yes
1449 1450 1451	perobscura micans borbonica gemella	gui Spe Gui Gui	NR RA NR NR RA	KYA 000 KYA	WLI WLI WLI wli	KAL kal 000	VOL VOL VOL	yes yes yes 2x2
1449 1450 1451 1452 1453	perobscura micans borbonica gemella binga fatuellus	GUI SPE GUI GUI WEF UBQ	NR RA NR RA CO	KYA 000 KYA KYA — KYA	WLI WLI Wli WLI 	KAL kal ooo kal — KAL	VOL VOL VOL VOL	yes yes yes 2x2 yes
1449 1450 1451 1452 1453 1454	perobscura micans borbonica gemella binga fatuellus holtzi	GUI SPE GUI GUI WEF	NR RA NR NR RA	KYA 000 KYA KYA —	WLI WLI WLI Wli WLI	KAL kal ooo kal —	VOL VOL VOL VOL	yes yes yes 2x2
1449 1450 1451 1452 1453 1454 PARN	perobscura micans borbonica gemella binga fatuellus holtzi JARA	GUI SPE GUI GUI WEF UBQ GUI	NR RA NR RA CO NR	KYA 000 KYA KYA KYA kya	WLI WLI Wli WLI 	KAL kal ooo kal — KAL kal	VOL VOL VOL VOL VOL VOL	yes yes yes 2x2 yes no
1449 1450 1451 1452 1453 1454 PARN 1456	perobscura micans borbonica gemella binga fatuellus holtzi IARA monasi	GUI SPE GUI GUI WEF UBQ	NR RA NR RA CO	KYA 000 KYA KYA — KYA	WLI WLI Wli WLI 	KAL kal ooo kal — KAL	VOL VOL VOL VOL	yes yes yes 2x2 yes
1449 1450 1451 1452 1453 1454 PARN 1456 GEGE	perobscura micans borbonica gemella binga fatuellus holtzi IARA monasi ENES	GUI SPE GUI GUI WEF UBQ GUI	NR RA NR RA CO NR RA	KYA 000 KYA KYA KYA kya	WLI WLI Wli WLI WLI wli wli	KAL kal ooo kal — KAL kal kal	VOL VOL VOL VOL VOL VOL	yes yes yes 2x2 yes no no
1449 1450 1451 1452 1453 1454 PARN 1456 GEGE 1457	perobscura micans borbonica gemella binga fatuellus holtzi VARA monasi ENES 'pumilio'	GUI SPE GUI GUI WEF UBQ GUI GUI	NR RA NR RA CO NR RA NR	KYA ooo KYA KYA KYA kya kya	WLI WLI WLI WLI WLI Wli Wli	KAL kal ooo kal — KAL kal kal	VOL VOL VOL VOL VOL VOL	yes yes yes 2x2 yes no no sav
1449 1450 1451 1452 1453 1454 PARN 1456 GEGE 1457 1459	perobscura micans borbonica gemella binga fatuellus holtzi IARA monasi ENES 'pumilio' niso	GUI SPE GUI GUI WEF UBQ GUI GUI SUD GUI	NR RA NR RA CO NR RA	KYA ooo KYA KYA 	WLI WLI WLI WLI WLI Wli Wli 	KAL kal ooo kal — KAL kal kal	VOL VOL VOL VOL VOL VOL	yes yes yes 2x2 yes no no
1449 1450 1451 1452 1453 1454 PARN 1456 GEGE 1457	perobscura micans borbonica gemella binga fatuellus holtzi VARA monasi ENES 'pumilio'	GUI SPE GUI GUI WEF UBQ GUI GUI	NR RA NR RA CO NR RA NR	KYA ooo KYA KYA KYA kya kya	WLI WLI WLI WLI WLI Wli Wli	KAL kal ooo kal — KAL kal kal	VOL VOL VOL VOL VOL VOL	yes yes yes 2x2 yes no no sav

APPENDIX 2

BUTTERFLIES RECORDED BY KARSCH (1893) FROM THE "ADELI MOUNTAINS", GERMAN TOGOLAND IN 1893

Torben B. Larsen, February 2006

A NOTE ON THE KARSCH MATERIAL


"On June 2 1888, Regimental Medical Officer Dr. L. Wolf raised the German flag on the Adado Mountain in the Adeli Region of inner Togo, where no white man had ever set foot, and began establishing a settlement that was later to become known as Bismarckburg." (Büttner, 1893 – translated from the German by the author). This was part of the implementation of a German Colonial Empire where the Conference of Berlin (1884–85) had "allocated" Togo to Germany. German "Togoland" included most of what is now the Volta Region of Ghana. Bismarckburg, of which little remains, was close to the southeastern border of the present Kyabobo National Park.

The German colonial authorities gave high priority to anthropological, ethnological, and natural history research. The six or seven early German officials spent much of their time collecting all manner of fauna and flora. Especially R. Büttner, E. Kling, and the mechanic Stöhr collected the many insects described in the 1893 volume of the *Berliner entomologische Zeitschrift* by F. Karsch. In this foreword to this volume, Büttner can hardly suppress his pride when he says that "Herr Dr. Karsch informs me that the small Adeli Region, despite the few years available for its exploration, is now probably has its fauna and flora better documented than anywhere else in tropical Africa" (Büttner, 1893). Several of the European collectors died within a few years of first reaching Bismarckburg, some in Togo, others after being repatriated to Germany. Büttner survived to study butterflies also in German East Africa (Tanzania) where he collected many new species.

The butterflies certainly indicate a degree of thoroughness not yet seen in Africa. No less than 220 species are recorded in the account of the material collected by Kling (1888 and 1889) and Büttner (1890 and 1991). Some of the species are not valid but due to seasonal variation or sexual dimorphism, and a few cannot be identified with certainty. But 202 valid species are included in the paper by Karsch (1893) – though in many cases under names that are not today valid. Of these 17 are valid new species currently recognized with Karsch as the author, as well as one subspecies (listed in the table below).

This was the largest number of butterflies recorded from any single tropical African locality at the time – and accurately recorded at that. It was only in the 1970s that Hopkins (1970) recorded about 300 species from Olokemeji Forest, Riley & Cornes (1971) about the same in Gambari Forest, and Larsen, Cornes & Riley (1980) 285 in a secondary forest area at Agege near Lagos (all in western Nigeria).

Karsch's excellent list provides an interesting opportunity for comparison with the collecting that took place between 1996 and 2006. The total number of species currently known from the Kyabobo area is just over 400, or twice that recorded by Karsch. His list is shown in the table below, with the nomenclature updated; also shown are which species were re-recorded during recent collecting and which species are known from the Wli Falls further south:

<u>Left</u>: A view towards Kyabobo National Park from the main street in Bismarckburg around 1905. In his foreword to Karsch (1893) Büttner waxes lyrical about its beauty. <u>Right</u>: The labels under one of Büttner's types, not a butterfly but a tree-cricket (Orthoptera).

FAMI	LY Species	Karsch 1893	Kyabobo 1994/2005	Wli Falls
PAPIL	IONIDAE			
4	Papilio dardanus	Karsch	KYA	WLI
9	Papilio chrapkowskoides	Karsch	NO	WLI
11	Papilio nireus	Karsch	KYA	WLI
12	Papilio menestheus	Karsch	KYA	WLI
13	Papilio demodocus	Karsch	KYA	WLI
17	Papilio nobicea	Karsch	KYA	WLI
18	Papilio cynorta	Karsch	KYA	WLI
20	Graphium angolanus	Karsch	KYA	WLI
25	Graphium adamastor	Karsch	KYA	wli
29	Graphium leonidas	Karsch	KYA	WLI
31	Graphium policenes	Karsch	KYA	WLI
PIERI	DAE			
36	Catopsilia florella	Karsch	KYA	WLI
38	Eurema senegalensis	Karsch	KYA	WLI
39	Eurema hecabe	Karsch	KYA	WLI
40	Eurema floricola	Karsch	NO	wli
42	Eurema desjardinsii	Karsch	KYA	WLI
43	Eurema brigitta	Karsch	KYA	wli
45	Nepheronia argia	Karsch	KYA	WLI
73	Belenois calypso	Karsch	KYA	WLI
84	Appias sylvia	Karsch	KYA	WLI
88	Leptosia alcesta	Karsch	KYA	WLI
95	Mylothris chloris	Karsch	KYA	WLI
106	Mylothris poppea	Karsch	KYA	WLI
109	Mylothris rhodope	Karsch	KYA	WLI
110	Mylothris jaopura TYPE	Karsch	KYA	WLI

THE BUTTERFLIES RECORDED BY KARSCH

I YCA	ENIDAE			
127	Megalopalpus zymna	Karsch	KYA	wli
129	Megalo. metaleucus TYPE	Karsch	KYA	wli
133	Lachnocnema emperanus	Karsch	NO	wli
141	Ptelina carnuta	Karsch	KYA	WLI
155	Pentila phidia	Karsch	KYA	wli
225	Liptena alluaudi	Karsch	NO	wli
227	Liptena pearmani	Karsch	NO	wli
254	Tetrarhanis symplocus	Karsch	KYA	WLI
264	Larinopoda aspidos	Karsch	KYA	WLI
296	Epitola urania	Karsch	NO	wli
354	Myrina silenus	Karsch	KYA	wli
369	Spindasis mozambica	Karsch	KYA	wli
370	Spindasis avriko TYPE	Karsch	NO	wli
375	Axiocerses harpax	Karsch	KYA	wli
415	Iolaus laon	Karsch	KYA	WLI
434	Iolaus aethria TYPE	Karsch	KYA	wli
437	Iolaus maesa	Karsch	NO	wli
445	Hypolycaena liara	Karsch	KYA	wli
446	Hypolycaena ?lebona	Karsch	KYA	WLI
452	Hypolycaena antifaunus	Karsch	KYA	WLI
453	Hypolycaena hatita	Karsch	KYA	WLI
473	Pilodeudorix aucta TYPE	Karsch	NO	wli
492	Hypomyrina nomion	Karsch	KYA	wli
494	Deudorix antalus	Karsch	KYA	wli
510	Anthene sylvanus	Karsch	NO	WLI
523	Anthene larydas	Karsch	KYA	WLI
555	Triclema phoenicis TYPE	Karsch	KYA	wli
565	Pseudonacaduba sichela	Karsch	KYA	WLI
568	Uranothauma falkensteini	Karsch	KYA	WLI
575	Cacyreus lingeus	Karsch	KYA	WLI
578	Leptotes pirithous	Karsch	KYA	WLI
584	Tuxentius carana TYPE ssp	Karsch	KYA	WLI
593	Eicochrysops hippocrates	Karsch	KYA	WLI
601	Euchrysops malathana	Karsch	KYA	WLI
604	Euchrysops osiris	Karsch	KYA	wli
617	Thermoniphas micylus	Karsch	KYA	WLI
622	Oboronia punctatus	Karsch	KYA	WLI
626	Oboronia ornata	Karsch	KYA	WLI
632	Azanus isis	Karsch	KYA	WLI
635	Zizeeria knysna	Karsch	KYA	WLI
637	Zizula hylax	Karsch	KYA	WLI
	HALIDAE	I Z	TZ XZ A	X 77 T
646	Libythea labdaca	Karsch	KYA	WLI
647	Danaus chrysippus	Karsch	KYA	WLI
648 651	Tirumala petiverana Amauris tartarea	Karsch	KYA KYA	WLI
651 652	Amauris hecate	Karsch		WLI
652 653	Amauris damocles	Karsch	KYA KYA	wli WI I
655 656		Karsch Karsch	K Y A KYA	WLI
	Gnophodes betsimena			WLI
657 661	Gnophodes chelys	Karsch Karsch	KYA KVA	WLI
661 672	Elymniopsis bammakoo Biovolus italus	Karsch	KYA KYA	WLI WLI
	Bicyclus italus Bicyclus procora TVPE		KYA KYA	
678 680	Bicyclus procora TYPE	Karsch		wli
680 682	Bicyclus milyas Bicyclus taenias	Karsch Karsch	NO KYA	000 WLI
690	Bicyclus vulgaris	Karsch	KIA KYA	WLI WLI
690 691	Bicyclus dorothea	Karsch	KIA KYA	WLI WLI
691 697	Bicyclus campa TYPE	Karsch	KIA KYA	W L1 000
091	Dicyclus campa TTTE	1201 2011	IX I A	000

701	Bicyclus safitza	Karsch	KYA	WLI
702	Bicyclus funebris	Karsch	KYA	WLI
705	Bicyclus istaris	Karsch	KYA	000
707	Bicyclus madetes	Karsch	KYA	WLI
709	Bicyclus martius	Karsch	KYA	WLI
713	Henotesia elisi	Karsch	KYA	wli
726	Charaxes fulvescens	Karsch	KYA	wli
729	Charaxes protoclea	Karsch	KYA	WLI
732	Charaxes lucretius	Karsch	KYA	WLI
733	Charaxes lactetinctus TYPE	Karsch	KYA	wli
734	Charaxes epijasius	Karsch	KYA	wli
736	Charaxes castor	Karsch	KYA	wli
737	Charaxes brutus	Karsch	KYA	wli
741	Charaxes tiridates	Karsch	KYA	WLI
746	Charaxes ameliae	Karsch	NO	000
756	Charaxes eupale	Karsch	KYA	WLI
770	Charaxes viola	Karsch	NO	000
773	Charaxes paphianus	Karsch	KYA	wli
779	Charaxes doubledayi	Karsch	KYA	WLI
791	Vanessa cardui	Karsch	NO	wli
792	Precis octavia	Karsch	KYA	wli
797	Precis pelarga	Karsch	KYA	WLI
801	Hypolimnas misippus	Karsch	KYA	WLI
802	Hypolimnas anthedon	Karsch	KYA	WLI
809	Protogoniomorpha cytora	Karsch	KYA	WLI
812	Protogoniomorpha anacardii	Karsch	KYA	WLI
814	Junonia oenone	Karsch	KYA	WLI
815	Junonia hierta	Karsch	NO	wli
822	Junonia chorimene	Karsch	KYA	WLI
823	Junonia terea	Karsch	KYA	WLI
824	Catacroptera cloanthe	Karsch	KYA	wli
825	Cyrestis camillus	Karsch	KYA	WLI
826	Byblia anvatara	Karsch	KYA	WLI
828	Mesoxantha ethosea	Karsch	KYA	WLI
829	Ariadne enotrea	Karsch	KYA	WLI
833	Neptidopsis ophione	Karsch	KYA	WLI
834	Eurytela dryope	Karsch	KYA	WLI
836	Eurytela hiarbas	Karsch	KYA	WLI
839	Sevenia umbrina TYPE	Karsch	KYA	wli
863	Cymothoe caenis	Karsch	KYA	WLI
879	Pseudoneptis bugandensis	Karsch	KYA	WLI
887	Pseudacraea lucretia	Karsch	KYA	WLI
900	Pseudacraea semire	Karsch	KYA	wli
901	Neptis nemetes	Karsch	KYA	WLI
915	Neptis najo TYPE	Karsch	NO	wli
937	Neptis melicerta	Karsch	KYA	WLI
941	Catuna crithea	Karsch	KYA	WLI
944	Catuna angustatum	Karsch	KYA	WLI
951	Hamanumida daedalus	Karsch	KYA	WLI
953	Aterica galene	Karsch	KYA	WLI
954	Cynandra opis	Karsch	KYA	WLI
960	Euriphene barombina	Karsch	KYA	WLI
995	Bebearia tentyris	Karsch	KYA	WLI
1002	Bebearia mandinga	Karsch	KYA	WLI
1002	Bebearia cocalia	Karsch	KYA	WLI
1011	Bebearia sophus	Karsch	KYA	WLI
1014	Bebearia phantasina	Karsch	NO	WLI
1027	Euphaedra medon	Karsch	KYA	WLI
1040	Euphaedra janetta	Karsch	KYA	WLI
1075	Euphaedra ceres	Karsch	KYA	WLI
1005	Luphuculu celes	11013011	111/1	· · L/I

1115	Euphaedra edwardsii	Karsch	KYA	WLI
1152	Acraea pharsalus	Karsch	KYA	WLI
1153	Acraea encedon	Karsch	KYA	wli
1155	Acraea alciope	Karsch	KYA	WLI
1159	Acraea serena	Karsch	KYA	WLI
1160	Acraea acerata	Karsch	KYA	wli
1165	Acraea bonasia	Karsch	KYA	WLI
1176	Acraea egina	Karsch	NO	WLI
1178	Acraea pseudegina	Karsch	KYA	WLI
1179	Acraea caecilia	Karsch	NO	wli
1180	Acraea zetes	Karsch	KYA	wli
1184	Acraea quirina	Karsch	KYA	WLI
1185	Acraea neobule	Karsch	KYA	WLI
1186	Acraea eugenia TYPE	Karsch	KYA	WLI
1191	Acraea alcinoe	Karsch	KYA	WLI
1196	Acraea epaea	Karsch	KYA	WLI
1200	Phalanta phalantha	Karsch	KYA	WLI
	-			
HESPEI	RIIDAE			
1203	Coeliades chalybe	Karsch	KYA	WLI
1207	Coeliades forestan	Karsch	KYA	WLI
1208	Coeliades pisistratus	Karsch	KYA	WLI
1209	Coeliades hanno	Karsch	KYA	WLI
1224	Celaenorrhinus galenus	Karsch	KYA	WLI
1230	Celaenorrhinus proxima	Karsch	KYA	WLI
1232	Tagiades flesus	Karsch	KYA	WLI
1233	Eagris denuba	Karsch	KYA	WLI
1244	Eretis melania	Karsch	KYA	WLI
1245	Sarangesa laelius	Karsch	NO	000
1248	Sarangesa majorella	Karsch	KYA	WLI
1250	Sarangesa thecla	Karsch	KYA	WLI
1253	Caprona adelica TYPE	Karsch	KYA	000
1256	Abantis bismarcki TYPE	Karsch	KYA	000
1269	Spialia ploetzi	Karsch	KYA	WLI
1277	Astictopterus abjecta	Karsch	KYA	WLI
1284	Gorgyra aretina	Karsch	KYA	WLI
1306	Ceratrichia nothus TYPE ssp	Karsch	KYA	WLI
1312	Pardaleodes edipus	Karsch	KYA	WLI
1313	Pardaleodes sator	Karsch	KYA	WLI
1314	Pardaleodes tibullus	Karsch	KYA	wli
1318	Xanthodisca astrape	Karsch	KYA	WLI
1328	Osmodes thora	Karsch	KYA	WLI
1338	Paracleros biguttulus	Karsch	KYA	WLI
1342	Acleros mackenii	Karsch	KYA	WLI
1345	Semalea pulvina	Karsch	KYA	WLI
1350	Hypoleucis ophiusa	Karsch	KYA	WLI
1351	Hypoleucis tripunctata	Karsch	KYA	WLI
1354	Meza meza	Karsch	KYA	WLI
1367	Andronymus caesar	Karsch	KYA	wli
1374	Zophopetes cerymica	Karsch	NO	wli
1379	Artitropa comus	Karsch	NO	wli
1381	Gretna waga	Karsch	KYA	WLI
1387	Pteroteinon laufella	Karsch	KYA	WLI
1391	Pteroteinon caenira	Karsch	KYA	WLI
1399	Leona leonora	Karsch	KYA	wli
1401	Leona stoehri TYPE	Karsch	NO	wli
1416	Monza cretacea	Karsch	KYA	WLI
1430	Fresna cojo TYPE	Karsch	KYA	wli
1434	Platylesches moritili	Karsch	KYA	wli
1445	Pelopidas thrax	Karsch	KYA	wli

During the collecting over the past ten years, 177 of Karsch's butterflies were recaptured. Only 25 of Karsch's records were missed. Some of these are savannah butterflies that were probably caught at the fringes of the Dahomey Gap. A few are rare and/or unpredictable species and some just happen not to be around during our visits. The recent collections thus include about 375 species for a positively recorded total of 400. The fact that recent collecting missed 25 of Karsch's records also accords quite well with the estimated total of 500 species in Kyabobo. When recent collecting missed just over 10% of the 200 Karsch species already known, the 375 probably do not account for more than 80% of those present; it is after all the last species than are the difficult ones to find.

Finally it should be emphasized that the comparative figures give no suggestions that extinction has taken place during the 110 years in between to the sets of observations.

REFERENCES:

BÜTTNER, R. 1893. Vorwort – die Insecten von Berglandschaft Adeli im Hinterlande von Togo (Westafrika). *Berliner entomologische Zeitschrift*, 38:1-8.

HOPKINS, B. 1970. The Olokemeji Forest Reserve. IV. Check lists. *The Nigerian Field*, 35:123-143.

KARSCH, F. 1893. Die Insekten der Berglandschaft Adeli in Hinterlande von Togo (Westafrika). *Berliner entomologische Zeitschrift*, 38:167-266.

LARSEN, T.B., RILEY, J. & CORNES, M. A. 1980. The butterfly fauna of a secondary bush locality in Nigeria. *Journal of Research in Lepidoptera*, 18:4-23.

RILEY, J. & CORNES, M.A. 1971. The Lepidoptera of Gambari Forest Reserve, Part I. Papilionidae, Pieridae, Danaidae. *Nigerian entomological Magazine*, 2:.